
CISC106 Spring 2013 Lab10

• This lab an all subsequent labs will be due Thursday at 11:55 PM EDT on Sakai.

• The preparation problems below are to develop your understanding without creating extra
work for you or the TA; these problems will not be graded. Be sure to read and understand
them - they will help with the problems you must submit for grading

• Review the code examples from your notes in class.

• You may work in pairs on your lab. If you do, one of you should be designated to submit
the assignment on Sakai. Both of your names should appear on code that you develop
together1.

• Whom do you think deducts more points: a happy TA, or a frustrated TA? Make your work
easy to read! It isn’t just good software engineering, it is good for your grade!

• EVERY python program/function must include header, doc string that contains a human-
readable desciption of what the function does, and must be followed by a good series of
tests, as discussed in class. Always test boundaries. Do not test erroneous input (e.g. a
factorial function does not need to correctly handle strings).

• EVERY .py file must have a comment line at the very top containing your name(s), lab
section, and a brief description of what the file is.

• Write the tests first! Real software engineers do this for very good reasons - so should
you! (This of course applies as well to parts one and two, but the tests are already given
to you for those.)

Preparation (do not submit for grading)

1. Copy the following bit of code into the interpreter:

try:
raise RuntimeError
print ’Does this message show up at all?’

except RuntimeError:
print ’This message had better show up.’

Carefully examine what happens.

2. type the following into the interpreter and examine what gets printed out:

>>> x = ’a strings’
>>> x[0]
>>> x[:-1]
>>> x = ’some other string’

1If you would like to work with someone but don’t know whom, your TA may be able to help connect you to other
students looking for lab partners.

1



>>> x[5:10]
>>> x = ’a-bunch-of-words’
>>> x.split(’-’)

Programs (to be graded)

1. Download the files ff7.py, lab10 tests.py, save00.ff7 and save05.ff7 from the course
website. Now create an ff7save.py, and make an FF7Save type with a constructor which
takes a string and builds an FF7Save from that string. An FF7Save should contain at-
tributes representing the following: Name, current level, current and max HP and current
and max MP of the lead character, Names of the three characters in the party2, amount of
money held by the party and their current location. See the tests in lab10 tests.py for
the format of the input string. When you finish this part, test create ff7save should
be passing.

2. Now implement a function to csv string which takes an FF7Save and returns a string
representing the FF7Save in Comma-separated values (CSV) format. Again, see the test
for examples of what a CSV row looks like.3 When you are done with this part, you should
be able to run the tests and watch them both pass.

3. Now you should create a lab10.py file and use it to implement the rest of the code for
this lab. Make sure you import both ff7.py and ff7save.py in it. Implement a function
read saves which takes a path fname and reads in all of the saves from fname into a list.4

NB that you’ll need to open the save file as a binary file. You can do this by giving the
call to open the appropriate flag, e.g. fin = open(fname, ’rb’). The b in the second
parameter of course stands for binary. An ff7 save file contains at most 15 saves, but may
contain less. If you try to read past the last save, it will raise IOError. You should make
sure your function will successfully read in all saves regardless of how many are in the
file. To read a save, you should call ff7.read save string and hand it the open binary
file. In your test for this function, you may simply read save00.ff7 and save05.ff7 into lists
and make sure the lists then contain the correct number of saves. There are 11 saves in
save00.ff7 and 15 in save05.ff7.

4. Now you should implement a function write saves to csv which takes a path fname
and a list of saves saves. It will write a CSV file containing all of the saves in saves
to the file at fname. N.B. that you should write a header to your CSV file before writ-
ing any of the saves. The header is just a comma-separated list of column names, e.g.
’Name,Level,Location’ would be a three column header where the column names are
Name, Level and Location, respectively. You should make sure to put your column titles
in the correct order, which you know based on how you implemented to csv string on
your FF7Save class.5 You should test this function by:

2if there are less than three characters in the party, you should keep track of this fact as well.
3for more information on Comma-separated values (or CSV) files, see http://en.wikipedia.org/wiki/

Comma-separated_values
4You can get the string representation of a save by calling ff7.read save string and passing it the open save

file.
5If you have Excel, OpenOffice.org or some other spreadsheet program, you can open your CSV file in it to view

it like a spreadsheet.

2

http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values


(a) using it to write a list of saves to a file

(b) constructing manually the string which constitutes what the CSV you just wrote
should be

(c) opening the file you wrote, but now for reading

(d) asserting that a call to read() on the input file you just opened is equal to the string
you manually created

For the sake of your sanity, you may choose to build a list of the three examples in
test create ff7save and write that list to a file for your test.

5. Finally, you should download saveviewer.py and portraits.py from the course web-
site. Run saveviewer.py and see what options it presents you with. Try reading in some
saves from save00.ff7 or save05.ff7, then try writing them to some CSV file. See what
happens when you click on the View Saves button. The data being displayed is com-
ing from the FF7Save type that you created! You can look at the code under class
SaveDisplayWidget in saveviewer.py and see where your type is being used.6

Make sure you eventually call close() on any file you open(). You should submit your
lab10.py, lab10 tests.py, ff7save.py, saveviewer.py, any CSV files you created, and any other
docs required by your TA on Sakai.

6What’s happening here is known as the Model/View pattern. FF7Save is the model and SaveDisplayWidget is
its view.

3


