
CISC106 Spring 2013 Lab09

• This lab an all subsequent labs will be due Thursday at 11:55 PM EDT on Sakai.

• The preparation problems below are to develop your understanding without creating extra
work for you or the TA; these problems will not be graded. Be sure to read and understand
them - they will help with the problems you must submit for grading

• Review the code examples from your notes in class.

• You may work in pairs on your lab. If you do, one of you should be designated to submit
the assignment on Sakai. Both of your names should appear on code that you develop
together1.

• Whom do you think deducts more points: a happy TA, or a frustrated TA? Make your work
easy to read! It isn’t just good software engineering, it is good for your grade!

• EVERY python program/function must include header, doc string that contains a human-
readable desciption of what the function does, and must be followed by a good series of
tests, as discussed in class. Always test boundaries. Do not test erroneous input (e.g. a
factorial function does not need to correctly handle strings).

• EVERY .py file must have a comment line at the very top containing your name(s), lab
section, and a brief description of what the file is.

• Write the tests first! Real software engineers do this for very good reasons - so should
you!

Problems (to be graded)

1. Create a GiraffePen type and write a constructor for it. The constructor should take three
values: a number of rows, a number of colums and a 2 dimensional grid of squares. Each
square in squares can either contain a giraffe, or it can be empty. Your constructor should
build a GiraffePen such that if squares is the empty list, the pen will be a rows × colums
pen containing no giraffes. Otherwise, if the dimensions of squares are rows × columns,
then the pen will be a rows× columns pen using squares as its grid. NB: You should think
carefully about what the representation of a square should be. Keep in mind that the
relevant information on a square is that it either is occupied by a giraffe or it is not.

2. Now implement a function place giraffe for your GiraffePen. Place giraffe should take
not only a pen, but also a row and a column. If the row and column specify a valid location
in the pen, and a giraffe is not currently occupying that location, then a giraffe should be
added to that location. Otherwise, nothing should change.

3. Implement a function evacuate giraffe for your GiraffePen. Again, it should also take
a row and a column. Again, it should ensure the row and column specify a valid location
in the pen. If so, and there is a giraffe in that location, the giraffe should be removed.
Otherwise, nothing should change.

1If you would like to work with someone but don’t know whom, your TA may be able to help connect you to other
students looking for lab partners.

1



4. Now implement a function has giraffe, which looks at a specific location in a GiraffePen
and returns whether or not that location contains a giraffe.

5. Write a mergeable function which operates on two GiraffePens. Two GiraffePens are
mergeable if and only if (iff) there is no location (row, col) such that (row, col) contains a
giraffe in both pens.

6. Finally, write a merge function which takes two GiraffePens. If the pens are mergeable,
it should return a new pen containing all of the giraffes on both of the original pens.
Otherwise, it should return the null pen - that is, a pen of 0 rows and 0 columns.

7. Now we’re going to make a simplifed2 model of wizards fighting in Final Fantasy Tactics -
The Zodiac Brave Story. First you’ll want to create a Wizard type and give it a constructor
which takes as arguments a name, brave value, faith value, number of hit points (HP),
mana points (MP), physical attack value (PA), magical attack value (MA), and speed and
returns a Wizard with these attributes. All of these attributes (except for the name, which
is of course a string) should be integer values.

8. Now implement a nuke function which takes two Wizards - an attacker and a target - and
(as the names all imply) causes the attacker to cast an offensive spell upon the target
provided the attacker has enough MP to do so. The Final Fantasy Tactics Battle Mechanics
Guide describes the damage formula for magical attacks as⌊

AttackerMA ·AttackerFaith · TargetFaith ·Q
10000

⌋
(1)

where Q is a number denoting the power of the spell being cast.3 Luckily for us, this is
a simplified model - so we’re just going to go ahead and assume that the only spell any
of our Wizards know is Bolt2, which has a Q value of 18 and costs 10 MP to cast. Keep in
mind that an individual’s HP can’t fall below 0 - if the attacker’s spell deals more damage
than the target has HP, the target’s HP is simply reduced to 0.

You should submit your lab09 tests.py, giraffepen.py, wizard.py, and any other docs re-
quired by your TA on Sakai.

2Ignoring zodiac compatibilities, gear-based elemental boosts, most of the available spells, reaction abilities, etc.
3NB that bvalc on a real number val means ”the floor of val”.

2


