
CISC106 Spring 2013 Lab07

• This lab an all subsequent labs will be due Thursday at 11:55 PM EDT on Sakai.

• The preparation problems below are to develop your understanding without creating extra
work for you or the TA; these problems will not be graded. Be sure to read and understand
them - they will help with the problems you must submit for grading

• Review the code examples from your notes in class.

• You may work in pairs on your lab. If you do, one of you should be designated to submit
the assignment on Sakai. Both of your names should appear on code that you develop
together1.

• Whom do you think deducts more points: a happy TA, or a frustrated TA? Make your work
easy to read! It isn’t just good software engineering, it is good for your grade!

• EVERY MATLAB program/function must include header, doc string that contains a human-
readable desciption of what the function does, and must be followed by a good series of
tests, as discussed in class. Always test boundaries. Do not test erroneous input (e.g. a
factorial function does not need to correctly handle strings).

• EVERY .m file must have a comment line at the very top containing your name(s), lab
section, and a brief description of what the file is.

Preparation (do not submit for grading)

1. Run MATLAB and at the prompt in the shell window enter the following:

>> row1 = [1 2 3 4]
>> row1 = row1 * 2

Note how this changes row1

2. Now enter the following;

>> row2 = [1 2 3 4]
>> row1 + row2

Note what that last line yields

3. Now make a 2D list, i.e. a matrix:

>> matrix1 = [1 2 3 4; 0 0 0 0; 20 30 40 50]

Enter the following and see what the results are:

1If you would like to work with someone but don’t know whom, your TA may be able to help connect you to other
students looking for lab partners.

1

>> matrix1(1, :)
>> matrix1(:, 2)

Note how you can take slices of entire rows or columns of the matrix.

You can also replace an entire row or column:

>> matrix1(2, :) = row1

With that last line, matrix1 should be

[1 2 3 4; 2 4 6 8; 20 30 40 50]

.

Problems (to be graded)

1. Reimplement the celsius to far function from lab03 in MATLAB. You should put this
function in a file called celsius to far.m.

2. Reimplement the floats function from lab04 in MATLAB. You should put this function in
a file called floats.m.

3. Reimplement the sum square difference function from lab51
2 in MATLAB. You should

put this function in a file called sum square difference.m.

4. Reimplement the insert in order function from lab06 in MATLAB. You should put this
function in a file called insert in order.m.

5. You probably remember from Algebra class how to solve systems of linear equations man-
ually. As it turns out, you can program a computer to solve certain classes of them for
you. Go to http://en.wikipedia.org/wiki/Gaussian_elimination and read about
Gaussian Elimination. Specifically, take note of how you use a row in the matrix to
make entries in the other rows 0. There’s also a very nice step-by-step presentation avail-
able here: http://www.math.iupui.edu/˜momran/m118/integers.html. Note that, for
some pivot row i and another row j in a matrix M , an easier way of telling the computer
to do the ”criss-cross” step is to simply subtract from row j row i muliplied through by
M(j, i)/M(i, i). You should use this information to implement a reduce function which
takes a matrix and solves it. For example, the following test should pass:2

assertEqual(
reduce([2 1 -1 8; -3 -1 2 -11; -2 1 2 -3]),
[1 0 0 2; 0 1 0 3; 0 0 1 -1])

2Of course, we’re not using a unit testing library in MATLAB, but you can test your reduce informally by calling
it at the shell and making sure it gives you back the right matrix.

2

http://en.wikipedia.org/wiki/Gaussian_elimination
http://www.math.iupui.edu/~momran/m118/integers.html

6. Now that you have reduce working, you should be able to use it to solve the following
problem:

Alice buys three apples, a dozen bananas, and one cantaloupe for $2.36. Bob buys a dozen
apples and two cantaloupes for $5.26. Carol buys two bananas and three cantaloupes for
$2.77. Figure out how much single pieces of each fruit cost. Hint: Set up a system of
3 linear equations. Each equation has the form: a · x + b · y + c · z = cost, where a is the
number of apples, b is the number of bananas, and c is the number of cantaloupes. That
is, encode these 3 linear equations in one matrix for the quantities of fruit purchased, and
one column vector for the cost of the purchase. Solve for the 3 variables (x, y, z) which
represent the price of each fruit. Your solution should show how much 1 of each fruit
costs.

You should add a comment somewhere in your reduce.m which says how much 1 of each
fruit costs.

You should submit all of your .m files and any other docs required by your TA on Sakai.

3

