
CISC106 Summer 2012 Lab07

• This lab an all subsequent labs will be due Sunday at 11:55 PM EDT on Sakai.

• The preparation problems below are to develop your understanding without creating extra
work for you or the TA; these problems will not be graded. Be sure to read and understand
them - they will help with the problems you must submit for grading

• Review the code examples from your notes in class.

• You may work in pairs on your lab. If you do, one of you should be designated to submit
the assignment on Sakai. Both of your names should appear on code that you develop
together1.

• Whom do you think deducts more points: a happy TA, or a frustrated TA? Make your work
easy to read! It isn’t just good software engineering, it is good for your grade!

• EVERY python program/function must include header, doc string that contains a human-
readable desciption of what the function does, and must be followed by a good series of
tests, as discussed in class. Always test boundaries. Do not test erroneous input (e.g. a
factorial function does not need to correctly handle strings).

• EVERY .py file must have a comment line at the very top containing your name(s), lab
section, and a brief description of what the file is.

• Write the tests first! Real software engineers do this for very good reasons - so should you!
(This of course applies as well to parts one and two, but the tests are already given to you
for those.)

Preparation (do not submit for grading)

1. Copy the following bit of code into the interpreter:

try:
raise RuntimeError
print ’Does this message show up at all?’

except RuntimeError:
print ’This message had better show up.’

Carefully examine what happens.

2. type the following into the interpreter and examine what gets printed out:

>>> x = ’a strings’
>>> x[0]
>>> x[:-1]
>>> x = ’some other string’

1If you would like to work with someone but don’t know whom, your TA may be able to help connect you to other
students looking for lab partners.

1



>>> x[5:10]
>>> x = ’a-bunch-of-words’
>>> x.split(’-’)

Programs (to be graded)

1. Download the files ff7.py, lab07 tests.py, save00.ff7 and save05.ff7 from the course
website. Now create a lab07.py and make sure you import ff7 in it. Make a function
create ff7save which takes a string and builds a dictionary representing an FF7Save
from that string. An FF7Save should contain attributes (keys) representing the following:
Name, current level, current and max HP and current and max MP of the lead character,
Names of the three characters in the party2, amount of money held by the party and their
current location. See the tests in lab07 tests.py for the format of the input string. When
you finish this part, test create ff7save should be passing.

2. Now implement a function to csv string which takes an FF7Save and returns a string
representing the FF7Save in Comma-separated values (CSV) format. Again, see the test
for examples of what a CSV row looks like.3 When you are done with this part, you should
be able to run the tests and watch them both pass.

3. Now you should implement a function read saves which takes a path fname and reads
in all of the saves from fname into a list.4 N.B. that you’ll need to open the save file as
a binary file. You can do this by giving the call to open the appropriate flag, e.g. fin
= open(fname, ’rb’). The b in the second parameter of course stands for binary. An
ff7 save file contains at most 15 saves, but may contain less. If you try to read past the
last save, it will raise IOError. You should make sure your function will successfully
read in all saves regardless of how many are in the file. To read a save, you should call
ff7.read save string and hand it the open binary file. In your test for this function, you
may simply read save00.ff7 and save05.ff7 into lists and make sure the lists then contain
the correct number of saves. There are 11 saves in save00.ff7 and 15 in save05.ff7.

4. Now you should implement a function write saves to csv which takes a path fname
and a list of saves saves. It will write a CSV file containing all of the saves in saves
to the file at fname. N.B. that you should write a header to your CSV file before writ-
ing any of the saves. The header is just a comma-separated list of column names, e.g.
’Name,Level,Location’ would be a three column header where the column names are
Name, Level and Location, respectively. You should make sure to put your column ti-
tles in the correct order, which you know based on how you implemented unicode on
your FF7Save class.5 You should test this function in a manner similar to how you tested
write list in lab 05. For the sake of your sanity, you may choose to build a list of the
three examples in test create ff7save and write that list to a file for your test.

2if there are less than three characters in the party, you should keep track of this fact as well.
3for more information on Comma-separated values (or CSV) files, see http://en.wikipedia.org/wiki/

Comma-separated_values
4You can get the string representation of a save by calling ff7.read save string and passing it the open save

file.
5If you have Excel, OpenOffice.org or some other spreadsheet program, you can open your CSV file in it to view

it like a spreadsheet.

2

http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values


5. Finally, you should download saveviewer.py and portraits.py from the course web-
site. Run saveviewer.py and see what options it presents you with. Try reading in some
saves from save00.ff7 or save05.ff7, then try writing them to some CSV file. See what
happens when you click on the View Saves button. The data being displayed is coming
from the FF7Save dictionary that you created! You can look at the code under class
SaveDisplayWidget in saveviewer.py and see where the dictionary’s being used.6

Make sure you eventually call close() on any file you open(). You should submit your
lab07.py, lab07 tests.py, saveviewer.py, any CSV files you created, and any other docs required
by your TA on Sakai.

6What’s happening here is known as the Model/View pattern. FF7Save is the model and SaveDisplayWidget is
its view.

3


