
Remember that for a function, printing and returning a value are different. You should only
print when the problem explicitly says to print or to output.

You should make up at least three of your own assertEqual tests for each function BEFORE you
write any code. The more you prepare to test your code before you start coding, the more
likely you are to discover semantic errors. To determine the correctness of your code for
grading purposes, the TA will append and run our own tests.

You MUST use the function names indicated. Half credit will be deducted for any change in
function name because of the extra effort the TA will require to grade the assignment.

Read Chapters 8,9,10 in the textbook.

Repeat, read Chapters 8,9,10 in the textbook.

Each problem is worth 5 points. Submit via Sakai a single file named lab3.py with comments
separating your answer to each problem below.

1. Write a function “countEvenInts” that returns the number of even integers in a list. Note: 14.
0 is not an integer, it’s a float. Note: consider 0 to be an even integer. (The list may contain any
of the atomic types we have learned: integers, floats, strings, Booleans.)

2. Write a function “sumTeenInts” that returns the total of only the teen integers (i.e., 13, 14,
…, 19) in a list. Float values such as 14.0 and 14.6 should NOT be added. (The list may contain
any of the atomic types we have learned: integers, floats, strings, Booleans.)

3. Write a function “insertList” that takes two parameters: a list of integers already in increasing
sequential order, and an integer, and returns a new list with the integer inserted in the correct
place in the list. Your function should first test the parameters. If the list contains anything but
integers, or is not sorted in non-decreasing sequential order, or if the parameter to be inserted
is not an integer, your function should output a meaningful error/warning message and return
None. Note: the list may have negative and/or duplicate values (e.g., [-9,-3,-3,1,5,5,9,11,11]).
Note: the value to be inserted may be negative. Note: the value to be inserted may be less
than the smallest value in the list or greater than the largest value in the list. Hint: you may use
existing list methods; see Section 5.1 in http://docs.python.org/tutorial/datastructures.html

4. Write a function “pointDistance” with four parameters x1, y1, x2, y2 that computes and
returns the distance between two points (x1, y1), (x2, y2) in a Cartesian plane (e.g., the x,y
plane). See the following web page for more information:
http://math.about.com/library/bldistance.htm Note: Input Testing - if any of the parameters
are not integers or floats, print an error message and return None. Your function should work
whether the parameters are integers or floats. Note: the parameters may be negative.

http://math.about.com/library/bldistance.htm

5. Write a function “assertAlmostEqual” which has three float parameters. assertAlmostEqual
returns True if the first two parameters are less than +/- the third parameter of each other.
(The third parameter is called the ‘tolerance’.) Otherwise assertAlmostEqual should return
False. Note: if the difference equals the tolerance, return False. Note: Input Testing – all three
parameters must be floats; otherwise print an error message and return None.

6. Read about available string methods (see the three .jpg files attached to the assignment).
Write a function “wordSeparator” that takes in a sentence where all of the words are run
together, but the first character of each word is in upper case. The function should return a
converted sentence in which the words are separated by a blank and only the first word starts
with an uppercase letter. For example, the sentence “FourScoreAndSevenYearsAgo” would be
converted to “Four score and seven years ago” Assume the original sentence has only letters -
no punctuation, no white space, no digits. No input testing is required.

7. Write a function “myStringIndex” that takes in 2 arguments: a string and a character, and
returns (only) the first index whose value is the character. Return None if the character is not in
the string. Note: no input testing is required for this function. (For your info, the existing
Python method for doing this is stringname.index(char). Do NOT use or even look at this code.)

8. Write a function “addDigits” that takes in a string containing only digits 0-9, and returns an

integer that is the sum of the digits. The function should return None for an invalid input. For

example: assertEqual (addDigits(“1234”), 10) would succeed

9. (EXTRA CREDIT) Then write a function “isPasswordValid” that takes in a string representing
someone’s computer password. To be valid, a password must: (1) be at least 7 characters long,
and no longer than 15 characters, (2) contain at least one uppercase letter, (3) contain at least
one lowercase letter, (4) contain at least one numeric digit 0 (i.e., 0 thru 9), and (5) contain at
least 1 special character in the set {! @ # $ % ^ & *}. Your function should return True or
False, and print an appropriate error message when the passwd is invalid.

