
CISC106 Summer 2009 Lab04

• Review the code examples from class.

• Some programs below are associated with a question. Answer the questions using comments below
your code in the m-file.

• The office hours of the TAs and the instructor are on the class website. Visit us!

• NOTE: Every function comment section should contain, at a minimum, three examples of the
function being called and the result of evaluating the call (for parts 1, 2, 4, 6, and 7). These examples
must include boundary conditions (as discussed in class). Your test files must cover at least these
exact examples (otherwise, why did you choose them?) and possibly more. Testing is important.

Problems
1. file: whileInput.m

Write a function that contains a while loop. The function will prompt the user for a number; if the
number is zero or positive, it will ask for another number; but if the number is negative, the function
will stop1.

Do not write a test script for this function, but demonstrate it in a diary file.

2. Write a recursive function using the following definition:

Write a recursive MATLAB function fact that takes a positive integer n as argument, and returns
fact(n) as defined:

fact(n) =

{
n, if n <= 2
the product of n and fact(n-1) otherwise.

Thus fact(4) evaluates to 24.

After you write fact, write a script that tests it. Demonstrate.

3. An important tool for computer users, as scientists, is the ability to compare how fast programs run.
Though we think of computers as fast, there are many problems which machines could do better if
our programs ran faster (e.g. weather tracking and prediction, automated interpretation of x-rays,
optimizing internet traffic in a dense city network).

NOTE: The timing runs for this lab must all be run in Matlab on Strauss. You may do so remotely,
but do not submit timing runs from a Matlab running directly on your own computer.

If you are interested in how long something takes, do not time it only once. Time it multiple times
and record all of your results. Matlab makes this easy.

Consider the following program, and draw yourself2 a picture showing what it does:

1Remember, if it has a “break” in it, it is wrong.
2Do not submit.

1



%Create a vector to hold the times of three runs
times = zeros(1,3);

%set a baseline time for a timing run
start = cputime();

for index = [1:100]
x = fact(index);

end

%calculate elapsed time and store
times(1) = cputime() - start;
%end of one timing run

disp(times);

Examine this program and run it to see how it works. If you don’t understand it, first remove some
semi-colons so you can see what is being assigned; then if it is still unclear take your drawing to
your TA or professor.

This program accomplishes the first timing run of three. Add two more parts to it so that it does
two more timing runs: 2) calculating factorials from 1 to 200; and 3) calculating factorials from 1 to
300. (How long do you think these will take? Does your data confirm your expectation?). You will
have a total of 9 data points.

Once this works, add a plot command, with title and axis labels. The x-axis should be the number
of factorials computed; the y-axis should be time in seconds. At each tick on the x-axis you should
have three data points (one for each run). Always show all your data points, not averages of your
data3.

After your script is working correctly4, show your script generating the data in a diary, and plot and
save the figure as a picture with the Matlab print command:

> print -dpng myFactPlot.png

You can look at your image file on Strauss using a browser to be sure it is correct.

4. Write a different factorial function, named fact2. Function fact2 will take one parameter, and will
compute the same answer as fact, but in a different way. Inside the function, use a for loop to
multiply all the numbers required (instead of using a recursive call).

After you test your code with a test script (will this be difficult to write?) use a loop in the interpreter
to see how many times you have to run the function to get a measurable time (something more than
.1 seconds).

3Sometimes points with deviation bars are acceptable, but a single average point is useless to a scientist.
4You can save yourself a lot of time by putting the plot commands into your (already working) script!

2



5. Create a script that will plot the times of running fact, fact2, and the built-in Matlab function factorial
on the same arguments. Use the number of run times you determined in part 4. Time each function
on three arguments, running the same number of times. Do three timing runs for each function on
each argument. Now plot the performance of all three functions on the same graph (this will look a
lot like your timing graph for fact, but will also have three times as many data points). Show your
script generating the data in a diary, and save your plot to an image file for submission.

Now create a second plot from the same data, but this time do not use the plot command, use the
command from page 64 of your Chapman text that will provide a better view of the data. If you
aren’t sure which one you need, experiment. If you still aren’t sure, bring the images from your
experiments to your TA or professor.

6. Write a recursive function to calculate the positive integer exponent of an integer, according to the
following definition:

expt(base, exponent) = { base, if exponent is one;
base ∗ expt(base, exponent− 1) otherwise.

(1)

Hint: When the function calls itself, the base should stay the same every call, but the exponent
should decrease (why?).

Write and demonstrate a script test file for the expt function above.

7. files: ssortLoop.m

Examine the selection sort function in Chapman 5.2. (What do you think of the variable names? )

Write your own version of selection sort that uses only loops, no recursion. Write and demonstrate
a script test file for your selection sort function.

If your TA requires a paper copy, be sure that you have a printed copy of your function M-files, script
M-files, image files, and diary files demonstrating your testing. All must be stapled together, with your
name and lab section on the top page.

Be sure that you upload a copy of all the MATLAB function, script, imasge, and diary files to Sakai.
Then, click submit ONLY ONCE to send these to your Sakai and your TA.

On the first page of every printed copy for this course, your name, section, and TA’s name must
appear.

3


