
Dr. John Cavazos
Computer and Information Sciences

04/29/2009

 Project 2 overview
 C++ data types (again)
  Scopes (Global, Inner, Outer)

  Work by yourself or in a team of 2
  Extra credit if done in C++

  Harder!!
  Tests skills in sorting and searching
  Written report of two pages required

  Serves as documentation for your work

  Create a struct with artist, song information
  Artist
  Song Title
  Size
  Etc...

  Sort
  Artist or Song (A to Z, Z to A)
  Size

  User input (for menu option)
  Filter (by size and by artist)

  Integer
  short, int, long (unsigned)

  Floating point
  float, double, long double

  Logical
  bool (values: true, false)

  Character
  char

  Text
  String (“Hello World”)

unsigned short quantity = 127;
short temperature = -10;

int carValue = 0; // always initialize variables!!
carValue = 57000;

quantity = carValue;

carValue = quantity;

The variable quantity cannot store big numbers

char Letter = ‘a’;

string greeting = “This is a string”;

greeting = Letter;

Letter = greeting;

The variable Letter cannot store strings;
Think: A character is a string but a string is not a character.

 Curly braces {} introduces a new block
 Creates a Scope
  Functions create a scope
 Loops and if statements create a scope

// this for loop creates a scope
for (…) {
 …
}

for (…) {
 // variables created in first for loop scope
 // are not visible here
 …
}

int main() {
 int x = 19; // x is known in all of main

 if (x == 19) {
 int y = 20;
 cout << “x + y is “ << x + y << endl;
 }
 // y is not visible here!
}

int main() {
 int i = 0; // i is outer scope
 int j = 100;
 if (j > 0) {
 int i = 20;
 cout << “Inner i is “ << i << endl;
 }
 cout << “Inner i is “ << i << endl;
}

int i = 100;
int main() {
 int i = 0; // i is outer scope

 cout << “i in main is “ << i << endl;

 cout << “global i “ << ::i << endl;

}

  Always initialize your variables
  Define variables where used
  Pick names carefully
  Always use the :: (scope resolution operator) to

access globals
  Avoid using variables of the same name for

different purposes

