
Christopher Thorpe
Computer and Information Sciences

04/17/2009

  Structs (137-140)
 Vectorization
 Matrix Tricks

 Given:

Name: Chris
Credits: 27
Graduation: 12/15/2011

Name: Sola
Credits: 18
Graduation: 05/17/2011

Name: Roger
Credits: 55
Graduation: 06/10/2009

Name: Tom
Credits: 15
Graduation: 05/22/2012

 Given: We can implement it with
  arrays like this:
  Name Credits

Grad.
  1
  2
  3
  4
 

Name: Chris
Credits: 27
Graduation: 12/15/2011

Name: Sola
Credits: 18
Graduation: 05/17/2011

Name: Roger
Credits: 55
Graduation: 06/10/2009

Name: Tom
Credits: 15
Graduation: 05/22/2012

27 Chris 12/15/2011

18 Sola 05/17/2011

55 Roger 06/10/2009

15 Tom 05/22/2012

 Given: OR we can do it like this an array with structs:

  .d

 
 
 
 
 

Name: Chris
Credits: 27
Graduation: 12/15/2011

Name: Sola
Credits: 18
Graduation: 05/17/2011

Name: Roger
Credits: 55
Graduation: 06/10/2009

Name: Tom
Credits: 15
Graduation: 05/22/2012

Students (1). Name: Chris
Students (1).Credits: 27
Students (1). Graduation: 12/15/2011

Students (2).Name: Sola
Students (2).Credits: 18
Students (2).Graduation: 05/17/2011

Students (3). Name: Roger
Students (3). Credits: 55
Students (3). Graduation: 06/10/2009

Students (4). Name: Tom
Students (4). Credits: 15
Students (4). Graduation: 05/22/2012

  Students = struct{‘name’, {‘Chris’, ‘Sola’,’Roger’, Tom’},
 ‘credits’, {27, 18, 55, 15}, ‘graduation’,

 { ‘12/15/2011’,’ 05/17/2011’,’ 06/10/2009’,’05/22/2012’}

  record1.name = 'Me'; record2.name = 'Not Me';
 record1.credits = 27; record2.credits = 30;
 record1.age = 10; record2.age = 14;

 record1
 record2

 record_array = [record1, record2];

 What is vectorization?
◦  Functions that can be performed on the entire

array instead of just one element in an array.
◦ Needed because MATLAB is an interpreter

not a compiler AND because speed is
important.

 Advantages of vectorization
◦  Fast and compact.

 Disadvantages of vectorization
◦ Hard to look at what is going on ‘inside’
◦ Application to your current code is not always

apparent

 The ‘loopy’ way
◦  function output = square(input)

 n = length(input);
 for i = 1:n
 output(i) = input(i)^2;
 end
 end

 The ‘vector’ way
◦  Output = input.^2;

Given an array of arbitrary size: Square each element in
the array and put the result into a new array.

 The ‘loopy’ way
 function count = num_less_than(input, value)
 n = length(input);
 count = 0;
 for i = 1:n

if (input(i) < value)
 count = count + 1;

end
end

 The ‘vector’ way
vector_less = (input < value);
count = sum(vector_less);

Given an array of arbitrary size: Tell me how many
elements of the given array are less than a given value.

  The ‘loopy’ way
 function output = num_less_than(input, value1, value2)
 [rows, cols] = size(input);
 for i = 1:rows
 for j = 1:cols
 if(input(i, j) < value1)
 output(i, j) = value2;
 else
 output(i, j) = input(i, j);
 end
 end…..

  The ‘vector’ way
vector_less = (input < value);
vector_less = ~vector_less;
temp = vector_less.*input;
vector_less = vector_less.*5;
output = vector_less+temp;

Given a grayscale image of arbitrary size: Make all pixels
less than value1 equal to value2

  Sometimes you want to know how many
elements are in a matrix.
◦ Useful for normalization problems.
◦ Num_elements = numel(input);

  Sometimes you want to change the shape
of a matrix.
◦  For matrix multiplication
◦  For simple output
◦ New_matrix = reshape(matrix, m, n);

  Sometimes your matrix is ‘bloated’ (seems
larger than it really is)
◦ Makes some mathematical operations

impossible.
◦ Makes accessing some dimensions tedious.
◦ New_matrix = squeeze(matrix);

  Sometimes you need to change the order
in which some dimensions appear.
◦  For matrix multiplication
◦  For simple output
◦ New_matrix = shiftdim(matrix, n);

