General Computer Science
for Engineers
CISC 106

Lecture 15

Dr. John Cavazos

Computer and Information Sciences
03/16/2009

Lecture Overview

* Unix commands

* if statements

* arrays (or matrices)
* loops

* Scripts

* functions

Midterm and Review

» Midterm review session, Gore 318
> March 17 4:30pm-6:00pm

o

» Midterm |
> March 18 (Class Time :Wednesday!)

Important Notes on Exam

* Write code from memory

* Study labs
> Write code for labs

* Study Midterm review

o Attend review session

Unix Commands

* When you log into a UNIX terminal
°> You are in your home directory.
° To see the files in your directory.
N
> To make an new folder/directory.
mkdir exampledir
> To change directories.
cd exampledir
> To go back one directory.
cd ..

> To go back to your home directory.
cd

Basic if statements

IF statements allow program to make
choices whether a condition is met or not

if (expressionl)
statements | ;

end

if (expression2)
statements2;
end

|F/Elseif Statements

if (expression|)
statements | ;

elseif (expression2)
statements2;
else
statements3;
end

Major Relational Operators

-A<B
-A>B
- A<=B
- A>=B
o A ==
- A~=B

A is less than B

A is greater than B

A is less than or equal to B

A is greater than or equal to B
A is equal to B

A not equal B

If statements

e print “‘blue” if N <=5
e print“red” ifN>5and N<=10

e print “green” if N > |0

If statements (contd)

if (N <=15)
fprintf 'blue\n’;
end
if (N>5 &N <= 10)
fprintf 'red\n’;
end
if (N> 10)
fprintf 'green\n’;

end

Arrays (aka matrices)

 All variables in matlab are arrays
* An array of one element is called a scalar

* A one dimension array is called a vector
x=3.14; < scalar

a=[1,2,3,45]; < vector

Arrays (aka matrices)

ex = |:0.5:5

Now X is an array of numbers;

x = [1.0, 1.5,2.0,2.5, 3.0, 3.5, 4.0, 4.5, 5.0]

Arrays (aka matrices)

« A=Tl,2;3,4;5,6]
* Creates a 3x2 array, 3 rows, 2 columns.
» semicolon creates a new row.

A= 1 2
3 4
5 6

For Loops

* Used when you know how many times code is
to be executed.

* Syntax
for <variable> = <start>:<increment>:<end>

 Variable is initially the start value

» At end of iteration variable changes by
Increment

* If value is not greater than end the loop runs
again.

Example Problem

| want to find the average # of widgets sold in 4 days

Day # of widgets

sold
| 15 Widget(l) = |5
2 22 Widget(2) = 22
3 20 Widget(3) = 20
4 18 Widget(4) = 18

Avg = (Widget(l) + Widget(2) + Widget(3) + Widget(4)) / 4
This is easy for a small number of days.
What if we had a 1000 days?
We can use a for loop!

Example Problem

* total = 0;
fori=1:1:1000 oop starts at |
total = total+widget (i); oop increments by |
end oop ends at 1000

avg = total / 1000;

A Loop Analogy

The mail man/woman executes a loop.
If they know the number of deliveries

For loop

for delivery = start : next_delivery : end
deliver _mail(delivery)
end

Scripts files

e Store commands in

* Variables are global, available after
you call script file

Scripts files

sumlt=0;
for current=|:finish
if (mod(current,2)==1)
sumlt=sumlt+current;
end
end

Functions

Special type of m-file

Function name same as file name

Contains a function name, arguments,
output, and “implementation”

All variables in function are local
They are not visible outside call!

Example Function

function sumlt=sumOddInt(finish)
sumlt=0;
for current=|:finish
if (mod(current,2)==1)
sumlt=sumlt+current;
end
end
end
% sumlt, current, and finish are local

When you call a function...

PushT —>» Pop

function bar2 executing g function bar2 >

function foo2 calls bar2 < function foo2 >

function foo1 calls bar1 < function foo1 >

function main calls foo1 function main >

In recursion these would be same function!!

Another Recursion Example

 Classic Example
> Function output = numbersSum(input)
if (input == 1)
output = |[;
else
output = input+numbersSum(input-1)
end

end

