
Dr. John Cavazos
Computer and Information Sciences

03/16/2009

 Unix commands
  if statements
  arrays (or matrices)
  loops
  scripts
  functions

 Midterm review session, Gore 318
◦ March 17 4:30pm-6:00pm
◦  http://www.udel.edu/CIS/106/cavazos/09S/

lectures/09S_midterm1review.pdf

 Midterm 1
◦ March 18 (Class Time : Wednesday!)

 Write code from memory
  Study labs
◦ Write code for labs

  Study Midterm review
 Attend review session

 When you log into a UNIX terminal
◦  You are in your home directory.
◦  To see the files in your directory.
  ls
◦  To make an new folder/directory.
  mkdir exampledir

◦  To change directories.
  cd exampledir

◦  To go back one directory.
  cd ..

◦  To go back to your home directory.
  cd

  IF statements allow program to make
choices whether a condition is met or not

if (expression1)
 statements1;
end

if (expression2)
 statements2;
end

if (expression1)
 statements1;
elseif (expression2)
 statements2;
else
 statements3;
end

◦ A < B A is less than B
◦ A > B A is greater than B
◦ A <= B A is less than or equal to B
◦ A >= B A is greater than or equal to B
◦ A == B A is equal to B
◦ A ~= B A not equal B

 print “blue” if N <= 5
 print “red” if N > 5 and N <= 10
 print “green” if N > 10

 if (N <= 5)
 fprintf 'blue\n';
 end
 if (N > 5 & N <= 10)
 fprintf 'red\n';
 end
 if (N > 10)
 fprintf 'green\n';
 end

 All variables in matlab are arrays
 An array of one element is called a scalar
 A one dimension array is called a vector

x=3.14;  scalar

a = [1,2,3,4,5];  vector

 x = 1:0.5:5

Now x is an array of numbers;

 x = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]

  A = [1, 2; 3, 4; 5, 6]
 Creates a 3x2 array, 3 rows, 2 columns.
  semicolon creates a new row.

 A = 1 2
 3 4
 5 6

 Used when you know how many times code is
to be executed.

  Syntax

for <variable> = <start>:<increment>:<end>

  Variable is initially the start value
 At end of iteration variable changes by

increment
  If value is not greater than end the loop runs

again.

  I want to find the average # of widgets sold in 4 days

Day # of widgets
sold

1 15
2 22
3 20
4 18

  Widget(1) = 15
  Widget(2) = 22
  Widget(3) = 20
  Widget(4) = 18

  Avg = (Widget(1) + Widget(2) + Widget(3) + Widget(4)) / 4
◦  This is easy for a small number of days.
◦  What if we had a 1000 days?
◦  We can use a for loop!

  total = 0;
 for i = 1:1:1000 loop starts at 1
 total = total+widget (i); loop increments by 1
 end loop ends at 1000
 avg = total / 1000;

 The mail man/woman executes a loop.
  If they know the number of deliveries
  For loop

for delivery = start : next_delivery : end
 deliver_mail(delivery)
end

  Store commands in
 Variables are global, available after

you call script file

sumIt=0;
for current=1:finish
 if (mod(current,2)==1)
 sumIt=sumIt+current;
 end
end

  Special type of m-file
◦  Function name same as file name

 Contains a function name, arguments,
output, and “implementation”

 All variables in function are local
◦ They are not visible outside call!

function sumIt=sumOddInt(finish)
 sumIt=0;
 for current=1:finish
 if (mod(current,2)==1)
 sumIt=sumIt+current;
 end
 end
end
% sumIt, current, and finish are local

function foo1

function bar1

function foo2

function bar2

function main function main calls foo1

function foo1 calls bar1

function bar1 calls foo2

function foo2 calls bar2

function bar2 executing

In recursion these would be same function!!

 Classic Example
◦  Function output = numbersSum(input)
 if (input == 1)
 output = 1;

 else
 output = input+numbersSum(input-1)
 end
 end

