
CISC105 Spring 2007 Lab03

• Review the code examples from class.

• Your textbook is a valuable resource. When something in your code is causing trouble, find an
example in your book and compare thw two. Alos, your book can go into details that I don’t have
time to cover in class, so be sure to read the text version of each topic we cover - it will help to
cement the knowledge in your brain, and may raise or answer questions.

• Some programs below are associated with a question. Answer the questions using C comments
below your code in the program file.

• Remember that comments are an important part of your program. Every program must have your
name, TA, section, and a description of what the program does, and every function must have its
own comments. Programs that have complex innards need comments sprinkled throughout.

• Any time you expect user input, you must print a prompt telling the user what to enter.

Programs
For each numbered problem below you will write a small program (except the last one). Name each
program lab03.n.c, where n is the number in the list below. For example, the name of the file for the first
will be lab03.1.c

1. In the last lab we looked at type void functions that print values, but do not return values. Math
functions typically do not print anything - they return a value. The function call is used as an
expression that evaluates to a value of the same type that the function prototype states.

Write a function of type double that takes a single double parameter and returns the square of that
parameter. Have your main() call the function three times on different values and nicely print the
returned values.

2. Copy program lab02.8.c. into a file for this lab. Add a second function that finds the larger integer,
but doesn’t print anything. Instead, this function will be of type integer, and so the call to the
function will evaluate to an integer in main(). Think: what integer should the function return?

Have the main() function print the value returned by your new function. When you’re done, your
main() should have two calls inside, one to the old function and one to the new one.

3. Copy lab03.1.c. Take the previous calls out of main().

Add a new function that returns the sum of three doubles. Call the function on 3.4, 5.67, and 1.21.
(Should you print the result in main()?)

Now in main() call the sum function again, but this time use your squaring function too, so that you
pass the squares of the numbers into the sum function. Think: how many times will your squaring
function be used?

4. Copy 3. Make a third function that takes three double parameters and returns a double. The function
body will consist of calls to the other functions you already have (i.e. there will be no multiplication
or addition happening in the body, just calls), and will return the sum of the squares of the three
parameters.

After your function is working, add code to allow the user to input the three numbers to main().

1

5. Write a program with a while loop that prints the integers from 0 to 10 inclusive on one line.

6. Write a program with a while loop that prints the integers from 0 to some integer entered by the user
(inclusive) on one line.

7. Write a function that prints a row of n asterisks, where n is a parameter. Call the function from
main() with user input.

8. Copy lab03.7.c. Put the user input and the call to the function inside a while loop, and continue
asking for length and printing asterisk rows until the user enters a negative number. (Hint: prompt
and scan input before the loop starts; call the function at the top of the loop, and then prompt and
scan again before the end of the loop).

9. Write a program using the && operator in the condition for an if statement. Take a real number as
user input (use a double variable) and print “34.5 is in range” if the number is between 20 and 40,
inclusive; print “34.5 is out of range” otherwise (where 34.5 is just an example number - you print
the input). Test your program with the three possible cases of numeric input.

10. In a single program, use the logical operators && and || to write an expression that correctly captures
each of the following the ideas, and prints the evaluation:

(a) Three is less than five and five is greater than zero

(b) Three is greater than one or two is less than four

(c) Six is less than three or greater than one

(d) Ten is greater than twenty, or five is less than both six and seven

11. The boolean1 C expression (5 < x < 10) is valid in the language, but doesn’t mean what you
might think. Use the expression as the condition for an if statement that prints “x is between 5 and
10”, take user input for x, and show that the user can enter a value for x that makes an apparent
contradiction. Write on your script or explain in your comments what is really being calculated.

You should have a total of 11 programs named lab03.1.c to lab03.11.c. Make a single script file (see
lab00 for the scripting instructions) where you cat, compile, and run each one in its final form (if it didn’t
compile, don’t run it in the script - mark the place in the printed script file with a colored marker so it
stands out). After all files have been run in the script, use ls and cd to show your new directories and their
files in the script.

On the first page of every printed copy for this course, your name, section, and TA’s name must
appear.

Submit all program and script files on MyCourses before midnight Thursday of next week, and give the
paper version to your TA at the beginning of your Friday lab (or in lecture Friday if you have a Wednesday
lab). Note: cat, compile, and run each program in order! Do not cat all programs, then compile, etc.

1“Boolean” means it evaluates to true or false.

2

