
CISC105 Fall 2005 Lab07

• Solve each of the following problems. Be sure to save every separate program. All programs must
be properly commented and indented (see Assignment Standards on the class website).

• Functions must be commented, but the names of functions and the names of parameters should
clearly indicate their purpose. Comments are explanatory, names are informational.

• We have been working on file input. Please review your notes and your text (which has lots of good
examples). You have also been learning to read man pages. How many have you read? Have you
read the man pages for commands you already know how to use? What grade do you expect to get
in this course?

• Even though these programs are simple and short, it would be smart to code them a few lines at a
time, compile, test. Remember that printf is your best friend when it comes to debugging.

• EVERY file you open must have a conditional to test if it opened correctly, as shown in class.

• EVERY file you open must also be closed.

• Name each program lab11.n.c, where n is the number in the list below. For example, the name of
the file for the first will be lab11.1.c

Programs

1. For each statement, show the effect by writing what is printed, drawing the effect on the stack, or
writing ”error”.

int x = 7, y;
int *ptr1, *ptr2;

ptr1 = &x;
ptr2 = ptr1;

printf("%p",ptr1);

printf("%d\n", *ptr1);

printf("%p\n" ptr2,);

printf("%d\n", *x);

printf("%d\n", *&x);

2. For the following declarations, draw a picture as we do in class so you can answer the questions.
Make up numbers for addresses, then use them consistently.

int x = 5;
int *ptr = &x;

1

What are the values of the following expressions?

a. ptr

b. *ptr

d. ptr == &x

e. &ptr

f. *x

g. *&x //what can you say about this ordered pair of operators, *&?

h. **&ptr

2. Create a data file using Emacs. Put three integers into it, separated by carriage returns (note: do
not put “\n ” into your file, just hit the return key). Be sure to follow the last integer with a single
carriage return.

Follow these instructions carefully. Do not add steps. In your main():

(a) Declare a FILE pointer namedinput . Open your data file in your main() using fopen (see the
man page if you don’t remember what it takes as arguments or what it returns).

(b) Check your FILE pointer with a conditional to be sure the file opened correctly, and print a
nice error message if it doesn’t open correctly. (Don’t exit the program, though!).

(c) Print the value ofinput as a pointer.

(d) Print the value ofNULL as a pointer.

(e) Close your data file using fclose. Yadda yadda man page yadda textbook yadda testing.

(f) Still in main(), and still usinginput , use fopen to open another filename that doesnot exist.

(g) Check your FILE pointer with a conditional to see if the file opened correctly, and print a nice
error message if it doesn’t open correctly.

(h) Print the value ofinput as a pointer.

(i) Print the value ofNULL as a pointer.

(j) Close the FILE pointer, even though you don’t think it worked. It’s a good habit.

(k) What have you demonstrated about FILE pointers and fopen? Think about: why do we use the
constant NULL instead of the value it represents?

3. In a new program, open the data file you created in 2. Use three fscanf calls to read the three integers,
and then print each integer out.

4. In main():

(a) Declare an array of char of size 80 calledline.

(b) Declare a variable of typechar * named “fgResult”. Note that this is not the same as type
char .

2

(c) Open your data file.

(d) Use fgets to get a line from your file and put it inline. Save the return value of your call to
fgets in “fgResult”. Print “fgResult” as a pointer, along withline (which is a what?).

(e) After that is working correctly, set up a loop to repeat part 4d a total of four times; once for
each integer, and then once more. Observe what gets printed the fourth time carefully. Note in
your comments what happens when fgets reaches the end of your data.

5. Write a loop that reads your data file, printing the value each time, until fgets returns NULL. (What
kind of loop? How will you know when fgets returns NULL?). Add a counter to your loop so that
the line number gets printed along with your data.

You should have a total of 5 programs named lab11.1.c to lab11.5.c. Make a single script file (see
lab00 for the instructions) where you cat, rat, and elephant each program in its final form.

Submit all code and script files to /dev/null (ask your TA for assistance), and give the paper version of
thecomplete script file onlyto the recycle bin at the beginning of your next lab. Note: Cat, compile, and
run each program in order! Who knows what could happen otherwise? It is not to be contemplated. Do
not cat all programs, then compile, etc.

3

