Laboratory Manual

CISC 105]
General Computer Science

Department of Computer and Information Sciences
University of Delaware

September 2003 through August 2004

(©2003 by University of Delaware

Contents

CONTENTS

Part 1

Course Information

Chapter 0

Course Information & Guidelines

0.1 Professor and Teaching Assistant (TA)

You will receive the following instructor and TA contact information in lecture or lab during
the first week.

Professor: TA.:

Office: Office:
Phone: Phone:
Hours: Hours:
Email: Email:

Note: Your first reading assignment - after you read this chapter of the lab manual,
read chapters one and two (pages 1-28) in your Unix textbook, and chapter one in your C
programming textbook.

0.2 Overview

CISC105: General Computer Science is primarily an introductory computer programming
course designed for two groups of students: (1) mathematically-oriented non-CISC majors,
and (2) CISC or potential CISC minors/majors without significant programming experience.
CISC105 assumes no prior programming knowledge.

The following are good reasons to take CISC105:

7

8 CHAPTER 0. COURSE INFORMATION & GUIDELINES

e You are a CISC major! without significant prior computer programming experience
which is prerequisite for CISC 181: Intro to Computer Science.

e You are thinking of becoming a CISC minor/major and need CISC105 and CISC181
before your Change of Minor/Major Request will be considered by the CISC Depart-
ment.

e You want to learn about:

e Design and implementation of small to medium sized programs in C, including
compilation, testing, debugging and execution of these programs.

e Principles of software engineering including naming conventions, program struc-
ture, and methodology.

e Familiarity with the Unix Operating System for a variety of purposes including
the creation, editing, transfer and printing of files.

e Use of the “X” window-based user interface.

e Use of local network and Internet resources.

e Basic ideas of computer science including program and data structures, file man-
agement, computer hardware components, and algorithm development and anal-
ysis.

The following are bad reasons to take CISC105:

¢ You could not get into CISC101. (Try ACCT160, FREC135, EGTE111, HPER276.)
e You need a group D requirement, and want to learn about computers.
e You need a course that will not require much time outside of class.

CISC105 is not a course in word processing. CISC105 is not a course that teaches canned
commercial software packages, such as EXCEL spreadsheets, ACCESS databases, and
POWERPOINT presentations. General computing concepts, terminology, and popular
office software is covered in CISC101: Computers and Information Systems.

CISC105 emphasizes programming. Programming is a difficult and time-consuming task.

0.3 Class Meetings and Attendance

Each week consists of two lecture classes and one lab class. Students are required to attend
all lectures and lab classes. Warning: Poor attendance almost always results in
poor performance.

0.4 Texts and Readings

e (' How to Program, 4th ed by Deitel and Deitel 2003 Prentice Hall
e CISC105 Laboratory Manual
e Uniz Unbounded, A Beginning Approach, 4th ed. by Afzal 2002 Prentice Hall

lalso CPEG, ELEG, MATH

0.5. PROGRAMMING ENVIRONMENT AND COMPUTER USAGE 9

0.5 Programming Environment and Computer Usage

The C language is available on a group of computers named Strauss, Bach, Brahms, and
Chopin. They are referred to as the “Composer” machines. You will primarily use Strauss
for all programming in CISC105. Strauss is a multiprocessor computer manufactured by
Sun Microsystems running the Solaris Unix operating system. Primary access to Strauss
is obtained via X-terminals located at various computing sites on the Newark campus and
elsewhere. Additionally, dial-up access is available as described in Appendix C of the Intro
to Unix handbook. For information about these computers and other University computing
resources, contact the Computer Network Services (CNS) Consulting Desk, 002 Smith Hall,
831-1205.

Note: You cannot do your C work on Copland. You MUST do your work while logged
into strauss. However, you may log into strauss from your computer, via FExceed, or a secure
shell connection (ssh).

0.6 Obtaining an Account - What YOU Must do NOW

Note: If you are officially registered for this course, you will have an account set up for you
on strauss.

To participate in the first lab class, you must have a valid university account. If you do not,
then you must :

1. Go to one of the computing sites or log on from any terminal at which you can obtain a
strauss window, and take the Electronic Community Citizenship Examination (ECCE)
interactively. You can obtain the instructions for the ECCE at the following URL:
http://www.udel.edu/help/ You need to take the ECCE repeatedly until you pass
it.

2. Immediately after you pass the ECCE, go tothe same URL: http://www.udel.edu/help/
scroll to the bottom, and follow the instructions for activating your computer account.
Your account will be activated overnight after you obtain a password. To insure that
you can get onto your account during lab class, you MUST pass the ECCE and obtain
your password by the day BEFORE your lab class.

0.7 Requirements and Grading
In determining your final grade, exams and assignments are weighted as follows:

20% Hour Exams

10 CHAPTER 0. COURSE INFORMATION & GUIDELINES

30% Final Exam

20% Labs/Homework

30% Programming Assignments
100%

However, your course average may not be more than 10 (ten) points higher than your exam
average.

Special considerations may have a positive effect on final grades. These include class par-
ticipation, a pattern of grade improvement, an isolated bad grade, etc. Such considerations
will never have a negative effect on the final grade.

Occasionally, mistakes occur in grading. After a graded item is returned, students have two
weeks to submit a request to have it regraded. These requests should be submitted directly
to the TA. After two weeks, no requests for grade changes will be considered. The request
for regrading should include the original exam or assignment, and the reason that regrading
is requested.

0.8 Graded Assignments

There are three categories of assignments: Labs, Homeworks, and Programming. Labs
and Programming Assignments are described later in this Laboratory Manual. Homework
assignments will be made available during the semester.

0.8.1 Lab Assignments

Lab assignments will be started (and in some cases completed) during the scheduled lab
classes. Normally each lab assignment is due by the beginning of your next lab class.
Most labs involve writing or modifying C programs. Each lab focuses on a particular concept
discussed in the text or in lecture, and helps you to complete the programming assignments.

0.8.2 Homework Assignments

Homeworks normally consist of pencil-and-paper exercises designed to give you practice
in applying information covered in the textbook and lectures. Homeworks usually do not
require the use of a computer, although students can often check their answers on the com-
puter. Homeworks will be handed out with the lab material, and are due at the beginning
of your next lab class.

0.8. GRADED ASSIGNMENTS 11
0.8.3 Programming Assignments

Programming assignments consist of applying several of the concepts from several labs and
lectures. Students must write their own computer programs that need to be compiled,
tested, and debugged on the Strauss computer. There will be at least 3 programming
assignments.

You will be given about 2-3 weeks to complete each programming assignment. Program
grades are based on: program design, correct execution, proper program comments, properly
formatted output, and proper program style. While working on a program, you may consult
with the TA, professor, classmates, friends, etc., but the actual programming that you hand
in must be your own work.

0.8.4 Extra Credit

Some assignments may include an opportunity for extra credit. Extra credit is optional,
i.e., students can earn an A grade in the course without doing any extra credit. Extra
credit on programming assignments provides students with an opportunity to gain greater
programming skill and to learn more advanced material while at the same time improving
their course grade. Current and potential Computer Science majors are encouraged to do
the extra credit assignments to facilitate transition into the higher level Computer Science
courses.

0.8.5 Late Submission of Assignments

An assignment’s due date will be clearly specified when the assignment is made. Do not
miss class or lab in order to complete an assignment. Late assignments will be penalized
unless an extension is granted by the Professor. Only the Professor (not the TA) may grant
an extension for an assignment.

The philosophy on late assignments is: (1) Everyone should try his/her best to complete
all assignments by the due date. (2) People who work conscientiously to meet deadlines
should be rewarded for their promptness and sacrifice of sleep. Thus, allowing others to
hand in late assignments without some penalty is unfair to these people. However, there are
various circumstances that may prevent a student from completing an assignment on time.
Allowing no late assignments would not give students much incentive to eventually complete
their work, which is a major source of learning. Thus, I believe that late assignments are
better than no assignment.

Late assignments will be penalized 5% per 24 hour period or fraction thereof (not including
weekends) up to maximum 25% penalty. For example, if your lab class meets Thursday
at 10am, and you submit the assignment late on Monday at 1lam, then the penalty is
10%. Late assignments will be accepted with penalty up to one week following the due

12 CHAPTER 0. COURSE INFORMATION & GUIDELINES

date. Assignments submitted more than one week late without an approved
extension will not be accepted.

It is best to submit late assignments directly to the Professor’s mailbox in 103 Smith Hall, or
the Professor’s office. An assignment is considered turned in when it is physically received
by the TA or professor or placed in their mailbox, not when it is printed by the computer.
Please write the date and time on the late assignment just prior to submitting it.

Note: Extra credit work cannot be handed in late.

0.9 Exams

There will be one or two exams during the semester, and a final exam. Each exam is closed
book and in-class. The final exam is comprehensive.

If an exam is missed because of an absence that has been excused by the Professor,
arrangements will be made either to take a make-up or to increase the weighting of the
other exam, according to the Professor’s choice. If the absence is not excused, it cannot be
taken later, and a score of 0 will be included in the computation of the final grade.

0.10 Readings

Be sure to keep up with the readings - be especially deligent with the readings for labs -
these should be completed before arrive for your weekly lab. The labs assume you have
done the reading before hand.

0.11 Academic Honesty

For many students, this is the first time you will be programming a computer and the first
time you will be “debugging” computer programs. Hence, you need to learn what is allowed
behavior and what is not. When your program does not work, the first thing to do is use
your book and notes to try and figure out the problem yourself. The second and third
things to do are to try to figure out the problem yourself! At that point, you may ask for
the assistance of a consultant, TA, Professor, classmate or friend to help you understand
the specific problem.

You may also discuss in general terms the general approach to solving a programming
problem. Once the discussion gets down to specific programming issues such as names and
types of variables to use, control structures such as loops, if-then-else statements, you must
end any collaboration.

0.11. ACADEMIC HONESTY 13

Specifically, you may not:

e Compare answers to any assignment before it has been turned in.

e Supervise a classmate typing in a program, or have a classmate supervise you typing
in a program

e Copy, or allow another student to copy, a computer file that contains another student’s
assignment, and submit it, in part or in its entirety, as your own.

e Work together on an assignment, sharing the computer files and programs involved,
and then submit copies of the assignment as one’s own individual work.

e Edit a script file, and then submit it as an original transcript of your computer session.

Any evidence of performing any form of academic misconduct will be appropriately handled
as stated in the Official Student Handbook of the University of Delaware. If you are in doubt
whether or not a behavior is permitted, then ask the Professor or TA beforehand. If you
are having difficulty with the course, then see the Professor or TAs for help.

14

CHAPTER 0. COURSE INFORMATION & GUIDELINES

Part 11

Laboratory Assignments

15

17

Lab Assignments

Lab assignments will be started (and in some cases completed) during the scheduled lab
classes. Normally each lab assignment is due by the BEGINNING of your next lab
class. Most labs involve writing or modifying C programs. Each lab focuses on a particular
concept discussed in the text or in lecture, and helps you to complete the programming
assignments.

Homework Assignments

Homeworks normally consist of pencil-and-paper exercises designed to give you practice
in applying information covered in the textbook and lectures. Homeworks usually do not
require the use of a computer, although students can often check their answers on the
computer. Homeworks will be handed out with the lab material, and are due at the BE-
GINNING of your next lab class.

What Computer Do I Use?

All program projects and lab work requiring an online program must be done on a Unix
machine - strauss for this course. You access strauss remotely - either from an X-terminal
or PC in a public lab, or from your personal PC. Use either a telnet session, or X-windows.
You must learn Unix, and use the Unix C compiler for this course.

18

Chapter 1

Lab - Logon, setup, unix, and
program edit-compile-execute

1.1 Goals

This lab is an exercise to familiarize you with the University of Delaware computing envi-
ronment. You will learn how to:

e Login and logout of the system.

e Improve the security of your password.

e Change your default project.

e Access computer files for CISC 105.

e Use the X—terminal interface to communicate with the computer named strauss.
e Become familiar with the vi text editor.

e Enter, compile and execute a C program using a C compiler named cc.

e Create a script file which records your computer session for grading.

1.2 Reference Materials

Afzal, Chapters 3-4, pp 31-82.

19

20CHAPTER 1. LAB-LOGON, SETUP, UNIX, AND PROGRAM EDIT-COMPILE-EXECUTE

1.3 Step 1: Getting an account and password

Every user of the University computer system must have three things: a login number or
name, a password, and a project number. Only students officially registered for the class
are authorized for this class’s project. You should already have a login number or login
name and a password from previous classes or from having established an email account,
or through freshman orientation.. If not, see syllabus.

1.4 Step 2: Logging in
A login window should already be on your screen when you sit down at your X-terminal.

e Type in your user name or number in the space provided after Login:.
e Press the RETURN (or ENTER) key.
e Type in your password at the password prompt and press RETURN.

e If you receive an incorrect login message, your number/name and password com-
bination is invalid. Perhaps you made a typo; try again. If you still cannot login,
your account is not yet active.

Congratulations! You are now logged into the machine named Strauss. You should see the
“C shell” prompt, >. This means that the computer is waiting for you to type commands
for it to execute. Whenever you type commands to the computer, you will need to press
the RETURN or ENTER key after each command to send it to the computer. When class
is over or whenever you need to log out, skip to the last section.

1.5 Step 3: Changing your password

Your password is your security against unauthorized users tampering with your files. Your
password should:

o Be 5-8 characters long.

e Not be a word that is found in the dictionary.

Contain both upper case and lower case letters.

Contain at least one non-alphabetic and one alphabetic character.

Be changed whenever you think someone has found out your password.

1.6. STEP 4: CREATING A LOGIN NAME 21

e Not be given to anyone including your friends.

To change your password, type the command passwd. Follow the instructions that are
displayed. When you change your password, the change is not immediate; it becomes
effective sometime within 24 hours. The new password will be recognized by all of the
composer computers. Do not forget your password. It is encrypted within the computer
and no one can access it for you. If you forget it, go to Smith 002A for help. You can
change your password at any time by typing the passwd command.

1.6 Step 4: Creating a login name

Your initial login is a number that will uniquely identify you for as long as you are a
computer user at the University of Delaware. However it is more convenient to be known
by a name rather than by a number, so you can specify a login name for yourself. Note,
however, that YOU CAN ONLY GIVE YOURSELF A USERNAME ONCE, and it cannot
be changed thereafter, so choose a name that you can live with for a long time. Most
people simply use their last name as their login name. Using just your last name is my
recommendation since other people often have to guess your user name, for example, when
sending you an email message. The next most common approach is first letter of first name
followed by last name, e.g., tsmith. Others choose more fanciful names such as starbaby,
monsterman. The choice is yours; just remember, your login name is like a tattoo. Once
selected, you cannot change it.

To create a name, type the command username (and as always, hit RETURN or ENTER.)
You will be prompted to give the username that you want. If you have been getting email
at your account which still has a user number, then you will now get email addressed to
your user name as well as your user number.

1.7 Step 5: Changing your default project

When you use a computer, you are in effect renting time on it, the cost of which is charged
to a project number. At the University of Delaware, you may be authorized to use several
projects. For example, most students are authorized to use an email account which has
project number 4000. Once officially registered you will be authorized to use your class
project for doing computer work for CISC105. You can find out the project number for this
course by entering the command chdgrp at the unix prompt - note the four digit number
with CSIC 105 annotation. If you don’t see your project listed, get help from your TA.

Whenever you log on, the computer time that you use is automatically charged to a project
called your default project. If you have an email account, probably project 4000 is your
default. Check to see what project numbers you are authorized to charge your time against

22CHAPTER 1. LAB-LOGON, SETUP, UNIX, AND PROGRAM EDIT-COMPILE-EXECUTE

and which of these is your default project by typing the Unix command chdgrp. Here is an
example execution:

strauss.udel.edu) chdgrp

Project Title Remaining Valid on hosts
1286 RESEARCH 300.00 strauss chopin bach ravel
2182 CISC105 6000.00 strauss chopin bach ravel
3568 CISC672-10 100.00 strauss chopin bach ravel
4000 U. OF D. E-MAIL 50.00 strauss chopin bach ravel

default group is currently 4000

In the above case, the user is authorized to use any of four projects, and the user’s default
project when they logon is currently 4000.

In this example, project number 2182 is the CISC105 class project—your actual project
number will be different. It is important that you use your CISC105 project when working
on CISC105 assignments. There are two ways to do this; the second way is recommended:
(We'll use 2182 as an example - make sure you use you actual project number when entring
the commands.)

1. Whenever you want to do CISC105 work, type the command newgrp 2182. This will
switch you to project 2182 until you type exit. You must do this every time you
want to do CISC105 work.

2. Type the command chdgrp 2182. This will change the default project so that you
will be working on project 2182 automatically each time you log on in the future. Use
the command newgrp when you want to work on non- CISC105 assignments. Note:
it takes up to 24 hours for your old default project to be replaced by the new one. An
example is shown below.

strauss.udel.edu), chdgrp 2182

Changing default project for smith
password:

The changes will be made within 24 hours

1.8 Step 6: Accessing CISC105 Files

It will be necessary to access files for CISC 105. The easiest way to access files for
labs and program assignments is to use a web browser(eg. Netscape). Simply go to
http://www.udel.edu/CIS/105 - all files needed for labs and programs are there.

1.9. STEP 7: CREATING AND EDITING A FILE ON UNIX 23

However, if you are working at a PC (eg. in your dorm room), then a browser is not the
best way to access files for CISC 105. Instead you will have to link to them using unix. The
Unix directory (i.e., path name) for these files is /www/htdocs/CIS/105.

1.9 Step 7: Creating and Editing a File on Unix

Note: Be sure to study chapter 4 of Afzul before beginning this section. You will be using
the vi text editor - this is your first major challenge - to learn this editor. Do all of the
practice edit sessions in Chapter 4 of Afzul - practice is the only way to learn an editor!

Information is stored in the computer in files. You can think of a computer file as just a
manila file folder, which contains information such as a computer program, a letter, data
for a computer program, a term paper, a resume, or any kind of information that can be
stored as a sequence of visible characters such as a-z, A-Z, 0-9, and punctuation. An editor
is a program that helps you create and store a text file in a computer and then to later
modify it.

Computers usually have several editors and you must learn one of them. One of the easiest
to learn at Delaware is vi. One of the most powerful (and complex!) is emacs. Both are
part of the standard Unix operating system which controls the operation of each of the
composers. You are free to use any editor. However, vi is strongly recommended for those
not already familiar with an existing Unix editor. Only vi is discussed here.

Start the vi editor (by entering the command vi labl.c). Enter insert mode by typeing an
“” (this letter will not be visible on the screen when you type it). Now, enter the following
C program exactly as shown with one exception; modify the comments at the beginning
to reflect your name, class section, and today’s date. Do not add or delete any blanks.
You do NOT have to type the exact number of stars. Call the file 1abl.c. Once you have
finished entering the file, type the escape key to leave insert mode - then you can use arrow
keys to move arround in the file. Fix and mistakes you made, then exit the editor by typing
:wq - meaning write the file and quit.

24CHAPTER 1. LAB-LOGON, SETUP, UNIX, AND PROGRAM EDIT-COMPILE-EXECUTE

/***

* Programmer: *
x Course: CISC 105 *
* Section: *
* Time: %
* Date: *
x Title: Introductory FExample: Compute n! *
% %
x This program inputs an integer value in the range 1-15 and computes *
x and outputs the ’factorial’ of that value. By definition, the *
x factorial of an integer n (denoted as n!) is: *
* n! =n % (n-1) * (n—2) * (n-3) * ... * 3 % 2 x 1 *
* e.g., 5! =120 =5 % 4 * 3 * 2 x 1 *
% %
3k 3k 3k 3k >k 3k 3k >k 3k 5k >k 3k >k 3k 5k >k 3k 5k >k 3k >k >k 5k >k 3k 5k >k 3k >k >k 3k >k sk 3k 5k >k 3k >k >k 3k 5k >k 3k 5k >k 3k >k >k 3k >k >k 3k 5k >k 5k >k >k 3k 5k >k 3k 5k %k 3k >k %k %k >k k k%

*/

/* include the standard input/output library routines x/
#include <stdio.h>

int main () {
/* Declaration and description of variables =/
int n; /* value inputed by the user * /
int nfact; /x computed n! value * /

/* get input value from the user x/
printf (” Enter a value between 1 and 15 (inclusive): 7);
scanf ("%d”, &n);

/* test for valid input =x/

if (n<=0) [] (n>=16)) {
/* input was not valid =/
printf (" You have entered an invalid value. Goodbye!\n”);
exit ();

}

/* compute n! x/
nfact = factorial (n);

/* print the results =/
printf (” the factorial of %d is %d\n\n”, n, nfact);

}

/**

* Function : factorial *
% *
* Purpose: recursively compute the factorial of an integer *

>k 3k 3k 3k 3k 5k X %k %k >k >k >k 3k 3k 3k 5k 5k % %k %k %k >k >k 3k 3k 5k 5k 5k % % %k %k >k >k %k >k >k >k >k >k 3k 3k 3k 3k 5k 5 > > % %k %k %k %k %k >k >k %k >k >k >k >k k Kk k Kk k k k k%

*/
int factorial (int 1) {
if (i <=1)

1.10. STEP 8: COMPILING A C PROGRAM 25

return (1);
else
return (i * factorial (i—1));

}

You can move around in vi by using the arrow keys. If you make an error in typing the
program text, consult Afzal to learn how to correct your mistakes.

Once you have typed in the C program (paying close attention to the punctuation), save
and exit fromuwi.

You can verify that your file has been saved by typing 1ls -1 labl.c at the command
prompt. The next time you type vi labl.c, you will be editing the most recent copy that
you saved.

1.10 Step 8: Compiling a C program

You have just finished creating a computer file that contains a real live C program. Before
you can see if your C program works by executing it, your C program must be translated into
a format that the computer can understand directly. We call the computer understandable
file an “executable file”. This translation process is known as compiling and is performed
by another program called a C compiler. There are several C compilers available. The
one we use is the Sun 4.2 C compiler. Type the command cc labl.c to invoke (execute)
this compiler.

If you made any mistakes typing in the given program, the compiler will now give you error
messages. Use vi to go back and edit your program. The error messages will not mean
much at this point since you do not know the C language. Do your best. Go to the indicated
line in error and look at the lines before and after this line for something that was typed
incorrectly. An error message may say the error is in line 20, but the real error was omitting
a “” in line 15. This process is called debugging.

After you have corrected some errors, go back and recompile the program by exiting vi and
typing cc labl.c again at the Unix prompt. Continue this cycle until compilation results
in no error messages. When compilation completes with no error messages, type 1s to list
the names of all of the files in your directory. The list should include both labl.c and
a.out. The a.out file is the executable file created by the C compiler.

1.11 Step 9: Executing a C program

Once there are no compilation errors, it is time to execute your program. Compilation
identified syntaz errors such as spelling mistakes and missing punctuation. Execution re-
quires valid semantics. If you try to divide by 0 (which is not allowed!), you will not get a

26CHAPTER 1. LAB-LOGON, SETUP, UNIX, AND PROGRAM EDIT-COMPILE-EXECUTE

compilation error message. Instead you will get an execution error message. Even worse,
if you type “4” when you want the computer to do subtraction, you will get NO error
message; the program will just generate incorrect results!

To execute your compiled program, enter the command a.out at the prompt. The file
a.out is the automatic (i.e., default) file name the compiler gives to the executable version
of your program. You cannot understand the insides of the file a.out. Do not try to print,
edit, cat, or otherwise look at an executable file.

Hopefully you will now see a valid execution of the factorial program. That is, you should
see the factorial displayed on your screen for the number you entered. If not, then continue
debugging.

Question: Take a careful look at the output from this program—do you see anything that
looks incorrect? If so, can you explain how it happened?

1.12 Step 10: Scripting Your Session for Grading

Note: Do not enter the vi editor during a scripted session.

Unix provides a way for you to “capture” all of the information that appears on your
terminal screen during the time that you are logged in, and to save it in a file. By typing
the command script file.scr, from that moment on, the computer will save whatever
you type and whatever the computer displays on the screen in the file called file.scr until
you type exit. After typing exit, no more information from the screen is saved in the file.

This capability allows you to show others what you actually did while you were working on
the computer, without them having to look over your shoulder. In particular, it allows the
TA or Professor to see what you actually did, and grade you on your work. The process is
two steps: (1) create a script file that contains what has been displayed on the screen. (2)
print out the script file and hand it in for grading.

For this lab, you should execute the following commands:

% script labl.scr
% cat labl.c

% rm a.out

% cc labl.c

% a.out

% exit

The first line results in the following actions:

1. Unix creates a file named “labl.scr”. WARNING! If “labl.scr” already exists, Unix
ERASES it; BE CAREFUL! The filename that you use should NOT end in .c If you

1.13. STEP 11: PRINTING OUT YOUR WORK AND WHAT TO HAND IN 27

type, “script labl.c”, you will ERASE whatever was in the file labl.c, which WAS
your C program!

2. In addition to showing you the info on the screen, Unix saves everything that appears
on the screen in the file “labl.scr”.

3. Unix watches your input, looking for you to type “exit” after the prompt. When you
do so, Unix stops storing information in “labl.scr”. DO NOT FORGET TO TYPE
“exit”; otherwise your script file will be lost.

The second line will display your contents of file labl.c on the screen. This will also get
saved in the file labl.scr because you are in script mode. The third line removes any a.out
file you may have in your directory before compiling and creating a new one. The fourth line
compiles your program, the fifth line executes it and displays any output on the screen, and
the sixth line exits the script mode. At this point, you can view your script file, labl.scr,
by typing more labl.scr. If the whole file is not displayed, hit RETURN or ENTER to
see the remainder of the labl.scr file.
IMPORTANT WARNING:

You are NEVER permitted to edit a script file in any way before submitting it. NEVER
means NEVER; not even to change your name’s middle initial. Editing a script file and
then submitting it is considered academic dishonesty.

1.13 Step 11: Printing out your work and what to hand in

After exiting “script”, you can print a copy of your script file using the command qpr.

To print your script file using the Willard Hall laser printer, type the following command:
gpr —-q whlps labl.scr
To print your script file using the Pearson Hall laser printer, type the following command:
qpr -q prsps labl.scr

To print your file in other buildings, you would substitute the name of the printer in that
building (usually written somewhere on the printer itself) for whlps in the above command.
For example, gpr -q smips labl.scr uses the printer in Smith Hall basement.

You can tell if your output is waiting to be printed or has finished printing at the Willard
Hall printer by entering the gstat -q whlps command soon after you execute the gpr
command.

Go ahead and print out your labl.scr file. This is what you should hand in to the TA for
grading of lab 1.

28CHAPTER 1. LAB-LOGON, SETUP, UNIX, AND PROGRAM EDIT-COMPILE-EXECUTE

1.14 Step 12: Logging out

Pull down the Root menu and hit “quit and logout”. You have successfully exited the system
when the original login window appears. Never leave a terminal without logging out;
otherwise the next user will have access to all your files! If you sit down at a
terminal where the previous person left and did not log out, simply log that person out for
her/him. Do not look around at that person’s files! Even looking without touching is an
invasion of privacy, and can get you in trouble.

1.15 Step 13: Follow Up

Do the terminal Sessionin Afzul on page 52 - and be sure to script the session for grading.

1.16 What to Hand In

Rememebr that lab work is due at the next lab session. Hand in all of the scripts files from
this lab - stapled as one package with your name and section number on the front page.

Chapter 2

Lab - Input/Output, Files, Email

2.1 Goals

This lab is an exercise to familiarize you with the following:

Sending and reading email.

Some Unix commands for working with files.

Interactive input and output with C and Unix.

Using data files for input and output.

More work with wvi.

Your primary task this week is to become competent at using the vi text editor to create
and edit files.

2.2 Reference Materials
Afzal, Chapters 4 and 5

Chapters 1 and 2 of textbook (Deitel).

2.3 Step 1: Email

Note: Your TA will tell you which email address to use for this part.

29

30 CHAPTER 2. LAB - INPUT/OUTPUT, FILES, EMAIL

For the first step of this lab assignment, enter the pine unix command and send a mail
message to the TA with answers to the following questions. IMPORTANT: In the Subject
line of your mail message, include the keyword CISC105.

1. What year are you?

2. Have you used computers before, say for word processing? If so, indicate how?
3. Do you expect to take another computer science course after CISC1057

4. What is your major? Does your major require you to take CISC105?

5. If you are not a CIS major, are you considering CIS as a major? as a minor?

6. List at least one thing that you hope to learn in this course.

2.4 Step 2: Working with Files

The operating system that coordinates all of the activities and files of the strauss computer
is called Unix. It is a popular operating system used on many different computer systems.
The Unix operating system organizes all of the files of all of the users of the computer using
directories. Each user of the computer has a home directory which is where you start each
time you login. Type 1s to see all of the files that you currently have stored on your home
directory. All of the directories of files on strauss are organized in the form of a tree.

To get more familiar with Unix commands try each of the following, and note the effect.

% 1s

% 1s *.c
% 1s -1

% 1ls mail
% ls junk
% 1s -al
% man 1s

Read the description of the commands: cp, rm, mv, cat, more, and qpr in the Ap-
pendix and in Afzul. These are commands you will often use when working with files.

2.5 Step 3: Interactive Mode in C Programs

In C, the printf statement causes the contents of the printf to be displayed or output to the
screen for the user to view. The scanf statement causes the C program to pause execution

2.5. STEP 3: INTERACTIVE MODE IN C PROGRAMS 31

at that point in the program execution, and wait for the user to type the proper input.
When the user hits the RETURN or ENTER key, execution continues and the program
uses the input from the user in a way depending on the contents of the scanf statement.

For this lab, perform the following to learn about interactive input/output in C:

1. Use vi to enter the following program into file called 1ab2.c and save it into your own

home directory.

/***
* Programmer:

Course: CISC105

Section :

Lab Time:

File : lab2.c

Date:

Title : Input/Output in C

* X X X X X X ¥

This program performs a simple computation of a customer’s bill .

* K K K X X X X X ¥

*
3k 3k 3k 3k 5k 5k >k >k >k >k 3k 3k 3k 3k 3k 5k 5k >k >k >k >k >k 3k 3k 3k 5k 5k 5k >k >k >k %k >k 5k %k %k >k >k >k sk 3k 3k 3k 3k 3k >k 5k >k >k >k %k >k %k %k >k >k %k >k >k >k 3k 3k 3k >k >k >k >k *k k %k x

*/
#include <stdio.h>

main () {

/xdeclaration of variablesx/

int num_pears ; /+*number of pears bought * /
int num_oranges ; /*number of oranges bought * /
float price_pear = .55; /+price of 1 pear */
float price_orange = .40; /xprice of 1 orange * /
float subtotal ; /*subtotal of bill without tax x/
float totalbill ; /xtotal of bill including tax =/

/*determine the quantity of goods bought by this customerx/
num_pears = 7;
num_oranges = 9;

/*calculate the bill subtotal and total %/
subtotal = (num_pears % price_pear) + (num_oranges * price_orange);
totalbill = (.07 = subtotal) + subtotal;

/*print out the total x/
/xprintf (” Total is: $%5.2f\n”, totalbill);x/

}

2. Make sure that you put your name and the date in the comments at the beginning of
the program.

3. Examine the program, and make sure that you understand what it is doing. Compile

32 CHAPTER 2. LAB - INPUT/OUTPUT, FILES, EMAIL

the program by typing cc lab2.c. Execute the program by typing a.out. Surprise!

4. Modify the program so that the total is displayed on the screen when you execute it,
recompile the program, and execute it again. You should get a total printed out that looks
like:

Total is: $ 6.26

5. Add statements to the program so that the output looks like:

The number of pears bought is 7.
The number of oranges bought is 5.
The subtotal of bill is $ 5.85
Total including 7% tax is: $ 6.26

The statements that are added should print out the current values of the appropriate vari-
ables to get the numbers to print out. That is, there should be no statements that look
like: printf(“The number of pears bought is 7.”); The printf statements should not explicitly
include the number to be printed such as the 7 above. Recompile and execute your program
to check that it does indeed display this on the screen.

6. Now, replace the two assignment statements to num_pears and num_oranges by printf
and scanf statements so that the program pauses execution to prompt the user for these
values. The prompt should include a question to the user such as “How many pears do you
want to buy?” Recompile your program and execute it. When your program displays the
prompt to the user, be sure to type in the same numbers as the original program, 7 and 5,
so you can check your results. This is called interactive input/output because the user is
interacting with the program as it executes in order to give the program the data, and for
the program to display the results on the screen!

Note: Don’t forget that ampersands are needed in front of variables in scanf, but NOT in
printf.

7. Note: Before you do this step - go to Appendix A and read the description of the Unix
script command. To demonstrate that you have mastered interactive input/output, enter
script mode, and cat your final version of the lab2.c file, remove the file a.out, compile your
program, and execute it 3 times with the values: 7 and 5, then 2 and 4, and then 0 and
6. Exit the script mode, print out your script file, and include it in what you hand in for
grading.

2.6 Step 4: Batch Mode Using Unix

Sometimes, we do not want to force the user to input all of the data interactively, especially
when we have lots of data to be processed. Imagine typing 10,000 data items each time you

2.6. STEP 4: BATCH MODE USING UNIX 33

run your program! Instead, we would like to type the data in a file one time, a file which we
usually refer to as the data file, and then have our C program get the input values from the
data file rather than from the user’s terminal. Sometimes, we also do not want to print the
results to the screen, but would rather output it to a file, which we refer to as the output
or result file.

For this lab, perform the following steps to have your 1ab2.c program use file input/output
rather than interactive input/output:

1. Create 3 different data files, one for each pair of input values used in the interactive
session. To create a data file called 1ab2.datal, use pico to create the file, then type the
following into the file:

75

That is all that the file contains, just the data numbers, with a space between them! Create
similar data files 1ab2.data2 and lab2.data3 for the other pairs of numbers above.

2. Copy your interactive lab2.c file to create a new lab2df.c file which you will modify.
You want to copy, not move, the file, so you can keep a version of the interactive C program.

3. Modify the 1ab2df . c program file to remove the prompts to the user. Do not modify the
printing of the results or the inputting of the actual values for num_pears and num_oranges.
Now, your C program is ready to obtain input from a file, and is able to print to either the
screen or a file.

4. Compile your new program, and execute it with the following line rather than just typing
a.out:

a.out < lab2.datal

Your program should be inputting the data from the 1ab2.datal file rather than the screen,
but still printing the result lines to the screen. None of the interactive prompts should be
printed on the screen.

5. To print the results to a file, execute the program again by typing:

a.out < lab2.datal >! lab2.resultsl

This command says take the input from the file 1ab2.datal, and put the output in the file
called lab2.resultsl. The ! insures that if a file named lab2.resultsl already exists,
the execution of this command will replace the old contents with the output of this program
execution. If you do not type the !, and a file named lab2.resultsl already exists before
this command, then the command will not work. Instead, you will get an error message
“File already exists”. There should be nothing printed to the screen. You should just get

34 CHAPTER 2. LAB - INPUT/OUTPUT, FILES, EMAIL

the Unix prompt displayed as if nothing happened. To check to see if the program executed
correctly, cat the lab2.resultsl file. You should see your output displayed!

6. To demonstrate that you have successfully mastered file input/output, start a script
session, cat your modified program, remove the old a.out file, recompile the modified pro-
gram, execute it 3 times using the three different data files and sending the output to three
different files, then cat each output file, and finally exit your script session, and print out
your script file to hand in.

2.7 Follow Up

For practice with both vi and working with the C language, do one of the following problems
at the end of Chapter 2 in Deitel: 2.17, and 2.19.

2.8 What to Hand In:

Hand in all script from above, stapled as one package, with your name and section number
clearly on the front.

Chapter 3

Lab - Expression Evaluation,
Variables, and Assignment

3.1 Goals

This lab is an exercise to familiarize you with the following:

e Unix directories

e The use of variables and assignment to store information.

Arithmetic expressions in C.

Operator precedence in C.

Use of the If statement in C (small intro).

3.2 Reference Materials

Appendix A - Useful Unix Commands
Afzal, Chapters 4, 5.

Chapters 2 of Deitel.

3.3 Step 1: Using Directories

Note: Read the section in Afzal on Unix directories before doing this part of the lab.

35

36CHAPTER 3. LAB - EXPRESSION EVALUATION, VARIABLES, AND ASSIGNMENT

The files in your unix account (strauss and copland) are organized in directories. You can
think of directories as folders in PC and Mac environments. Some directories are created for
you - for example, every user has a home directory, and most users have a directory called
mail. When you login you are in your home directory. You can see what is in a directory
by using the 1s command. For example, in the last lab you entered the command 1s mail
- try it again. The mail directory is used by pine to store all of your mail. Directories are
very useful for keeping related files in one place.

Perform the following sequence of commands to make a new directory for all of your CISC
105 lab files.

1. First, be sure that you are in your home directory by typing the following two com-
mands
cd
pwd

2. Now make a directory called CIS105Labs by typing
mkdir CIS105Labs

(mkdir stands for “make directory”)

3. Verify that directory (folder) named CIS105Labs is there by typing
1s
and noting the output.

4. Now move all the lab files into this new directory. Do this with the Unix mv command.
For example, type
mv lab2.c CIS105Labs
to move the file 1ab2.c. Repeat this for each file that is related to CISC 105 lab work.

5. Type 1s again and notice that the lab files are now hidden. Where are they? Type
the command 1s CIS105Labs, and you should see them.

All of your lab files are now in one spot, and not cluttering up your home directory. Now,
all you have to do is make sure that all new CISC 105 files are created in the directory
CIS105Labs. To make this happen, simple change to this directory before beginning your
work. For example:

login
cd CIS105Labs

...do your work ...

3.4. STEP 2: VARIABLES AND ASSIGNMENT 37

logout

Note: the directory you are in is called the working directory. At any time you can determine
your working directory by type the command pwd, and you can go to your home directory
by typing the command cd. Read the descriptions of the directory-related commands in
the Appendix A.

Note: When you download files for this course using Netscape, save them in directory
CIS105Labs.

3.4 Step 2: Variables and Assignment

1. Copy the file called 1ab3a.c into your CIS105Labs directory. Here is the relevant Unix
copy command:

cp /www/htdocs/CIS/105/Labs/lab3a.c .
Note: The dot (.) at the end is important!

You now have a file in your home directory that is a replica of my lab3a.c file. Type 1s to

make sure it is there. If it is not, try getting the file again. This file contains the following

C program:

[3 ks o ok ko o koK ok Kok R KR K K R KK K K R KK R KKK R KK R Kk R K KR K ok o K Kk o K oK R KK o K oK oK o K K
* Programmer:

Course: CISC105

Section :

Lab Time:

File : lab3a.c

Date:

Title: Variables, assignment, and expression evaluation

* K X X X X X X

This program performs computations, input, output, and assignment.

¥ K K K X X X X X ¥

*
3k 3k 3k 3k 3k 3k 3k >k 3k 5k sk >k 3k k >k 3k sk >k 5k sk >k 3k sk >k 3k sk >k 5k 3k >k 3k sk >k 3k >k 3k sk >k 3k sk >k 3k sk 5k 5k >k 5k sk >k 5k sk %k 5k %k >k 5k >k 5k %k %k 5k %k >k %k kok k k ok kk

*/
#include <stdio.h>

main () {
/xdeclaration of variables x/
int datal, data2 = 0, data3 = 0; /+user’s data values x/
int sum; /#sum of user’s data values * /
int result; /*result of complicated expression x/

38CHAPTER 3. LAB- EXPRESSION EVALUATION, VARIABLES, AND ASSIGNMENT

/*interactive session to obtain data values for computationx/
printf (” Enter first data value: 7);

scanf ("%d”, & datal);

printf (” Enter second data value: 7);

scanf ("%d” ,& datal);

printf (” Enter third data value: 7);

scanf ("%d” & datal);

/*print out all current values of data variables to check interactive session codex/
printf (" Just after interactive session:\n”);
printf (” Variable values: datal=%d data2=%d data3=%d \n”, datal, data2, data3);

/*perform calculations x/
data3 = datal 4+ data2 + data3;

/*print out all current values of all variables to check computation*/
printf (” Just after computation of sum of the data values:\n”);
printf (” Variable values: datal=%d data2=%d data3=%d sum=%d\n”,datal, data2,data3,sum);

}

2. Examine the program, and make sure that you understand what it is doing. Compile
the program by typing cc lab3a.c. Execute the program by typing a.out. Use the values
5, 8, and 2 when prompted for the three data values. Observe what the program does now.
In particular, observe the values that you input versus the values output for each of the
data variables.

3. The programmer actually intended for each new data value to be stored in a different
variable, in particular, the three variables datal, data2, and datad. The program currently
does NOT do this. Edit the program to achieve this intended action. Recompile the
program, and execute it again. Make sure that the printed values for datal, data2, and
data3 match the values that you, the user, type as input during the interactive session of
execution.

4. Now, notice from observing the printed values during execution that the values printed
for one of the variables has been changed after the computation section of the program (i.e.,
after the section commented as “perform calculations”. The programmer did not intend to
change any of the variables datal, data2, or datad throughout any part of the execution of
the program. These variables should remain unchanged throughout the entire execution.
Edit the current version of the program so that the sum of the data values is still computed,
but does not erase the data values already stored in datal, data2, and datad. Recompile
the program, execute it again, and observe that your actions corrected the situation.

5. Lastly, add statements to the end of the program to compute the following and print out
the results of each computation. These computations should not change the values stored
in datal, data2, and datad. That means that you will have to declare more variables to
store the results of each of these computations. The printf statements should print out the
values of these new variables as well as datal, data2, and data3 to insure that you did not

3.5. STEP 3: EXPRESSION EVALUATION AND OPERATOR PRECEDENCE 39

change their values during the computation. Compile and execute your program with the
same input values as before, and insure that it performs as you expect.

a. compute and print twice the value of datal
b. compute and print the value that is 1 more than datal

c. compute and print the square of data3

3.5 Step 3: Expression Evaluation and Operator Precedence

1. Copy the file called 1ab3b.c into CIS105Labs home directory. This file contains the
following C program:

/***
* Programmer:

Course: CISC105

Section :

Lab Time:

File : lab3b.c

Date:

Title : Expression evaluation

* X X X X X ¥ ¥

This program performs expression evaluations and output.

¥ K K K X X X X X ¥

*
3k 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k 5k >k 3k 5k 5k 3k 5k sk >k 5k sk >k 5k sk >k 5k sk >k 5k sk >k 3k >k 3k sk >k 3k sk >k 3k sk 5k 5k >k 5k sk >k 5k sk %k 5k sk >k 5k >k 5k >k %k 5k %k >k %k kok sk kokkk

*/

#include <stdio .h>

main () {

/*declaration of variables x/

int datal, data2, data3; /*three data valuesx/
/*initial assignment of 3 data values for computationx*/
datal = 4;

data2 = 3;

data3 = 9;

/#print out original values of data variables x/
printf (” Original variable values: datal=%d data2=%d data3=%d \n”,datal,data2, data3);

/*add code here for lab=x/
}

2. Add statements to the end of this program to compute and output the product of

40CHAPTER 3. LAB- EXPRESSION EVALUATION, VARIABLES, AND ASSIGNMENT

the three data values, in addition to printing out the original data variables, which should
remain unchanged.

3. Add statements to the end of this program to compute the average of the three data
values, and print out the result, in addition to printing out the original data variables again,
which should remain unchanged after the computation. This average should be computed
as a float.

4. Add statements to the end of this program to compute the sum of the two values: the
average of datal and data2 and the average of data2 and data3. Then, add a statement to
print out the result. The original data variables should remain unchanged.

Recompile your final program, execute it, and insure that it works correctly.

3.6 The C If statement

1. Use vi to enter the following program into a file called 1ab3c.c - make sure you are in
the CIS105Labs directory.

/%

3k 3k 3k 3k 3k 3k 5k >k 3k 3k sk 3k 5k >k 3k sk 3k 3k 5k 3k 5k >k 5k sk 3k 5k sk 5k sk 5k sk 3k 5k sk 5k sk 3k 5k >k 5k >k 5k 5k >k >k 5k 3k 5k %k >k %k >k %k >k 5k %k >k %k kk k kkkk
* Programmer: *
* Course: CISC105 *
* Section: *
* File : lab3c.c *
* Date: *
x Title: payroll with overtime *
* *
* This program computes weekly pay for an employee, given the *
* hours worked and the rate of pay. *
L3 %

% >k >k 3k 3k 3k 3k 3k 3k 5 % %k %k >k >k %k >k >k >k 3k >k 3k >k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k >k 3k 5k 5k > > 3k > 3k 5k %k >k % % ¥k %k k k*k kX

*/

#include <stdio .h>

main () {
/* Declaration of variablesx/
int hours; /* number of hours worked */
float rate; /% rate per hourx/

float pay; /* total pay x/

/* get values for hours and rate x/
printf (" Enter hours worked:”);
scanf ("%d”, & hours);

printf (” Enter hourly rate:”);
scanf ("%f”, & rate);

3.7. PRACTICE PROBLEM 41

/* compute total pay and display answer x/
pay = hours *x rate;

printf (” Total pay is %f \n”, pay);

}

2. Add a variable to hold the overtime part of the pay - call it overtime - it should be a
float. Declare a second new variable to hold the regular pay.

3. Overtime is computed as follows: if the hours worked is greater than 40, then the rate
for the hours over 40 is 1.5 times the regular hourly rate. Add statements to the program
so that it properly computes total pay, including overtime. If hours is less than or equal to
40, then overtime should be set to zero. Regular pay is the pay earned on the first 40 hours
of work.

To do this, you should use a simple, one alternative if statement. If statements are covered
in Chapter 4 (which we may not get to for awhile in class)! Fortunately if statements are
easy to understand. To see the general idea and examples of the if statement in C, read
Section 4.3 of the text book. This section begins on Page 158.

4. Change the output section of the program so that it produces the following.

Hours worked 48
Hourly rate $ 8.75
Regular pay $350.00
Overtime pay $105.00
Total pay $455.00

3.7 Practice Problem

1. Problem Statement: Variables occupy space in memory - each type of variable may
require a different amount of space, and the amount can vary for different computers'.
Write a small program to determine the size of various data types.

2. Program Development: Following is a short outline of the little program. Fill in
the missing C statements.

/* put a comment block at the beginning*/

/* include the standard header file */

!The usual unit of measurement for space on a computer is the byte (standardized at 8 bits at this point
in time). Your output will be in terms of bytes.

42CHAPTER 3. LAB - EXPRESSION EVALUATION, VARIABLES, AND ASSIGNMENT

/* open the main() function */

/* declare one variable for each of these types: short, int, long, char,
float, and double */

/* use the sizeof function to compute and the printf
function to display the memory size for each variable

/* close the main function */

Use vi to enter the program into file called 1ab3d. c; then compile and run the program.
3. Compile and Debug Compile your program, and use the editor to fix any errors.

4. Execute: Make a script file for hand in, in which you cat your source file, and run
the program.

3.8 What to Hand In

Before submitting anything, please be sure that you have edited each of the
program files lab3a.c,lab3b.c and lab3c.c to contain your name as the program-
mer. When you are sure your programs work, make three script files, lab3a.scr, lab3b.scr
and lab3c.scr, in the following ways:

pwd

script lab3a.scr
cat lab3a.c

rm a.out

cc lab3a.c

a.out

Input values 5, 8, and 2 when prompted for them during execution here.
exit
script lab3b.scr

cat lab3b.c
rm a.out

3.8. WHAT TO HAND IN 43

cc lab3b.c
a.out
exit

script lab3c.scr
cat lab3c.c

rm a.out

cc lab3c.c

a.out

exit

Input 48 for hours and 8.75 for hourly rate.

The first script file will show us your final version of the first program, which is contained in
file lab3a.c, show us that it compiles correctly, and executes as desired. The second script
file will show us your final version of the second program, which is contained in file lab3b.c,
show us that it compiles correctly, and executes as desired. Laser print 2 and submit all
four script files as follows.

cat lab3*.scr > handin
qpr -q whlps handin

2Use the printer name for the printer in your lab; here we are illustrating with the printer name for the
Willard 009 lab room.

44CHAPTER 3. LAB - EXPRESSION EVALUATION, VARIABLES, AND ASSIGNMENT

Chapter 4

Lab - Control Structures - 1

4.1 Goals

This lab is an exercise to familiarize you with:

¢ Simple conditionals (if).
e Relational and logical operators.
e Two-way conditionals (if-else).

e While loop.

4.2 Reference Materials

Chapter 3 of Deitel (pp 56-96).

4.3 One-way Conditionals and Logical Operators

Review pages 62-66 (section 3.6) of Deitel before doing this part of the lab.

1. Problem Statement: Students in a course take three exams. The instructor would
like a program to compute the student’s average and letter grade. The letter grade is
assigned as follows: 90-100 ’A’, 80-89 'B’, 70-79 'C’, 60-69 'D’, less than 60 'F’. Your
job is to write a program to do this - for one student at a time.

2. Program Development: - following is an outline for your program. Fill in the
missing C statements to complete the program - then use vi to create a source file -
called lab4a.c.

45

46

CHAPTER 4. LAB - CONTROL STRUCTURES - 1

/* put a comment block at the top */

/* include the needed C library header files */

/* open the main function */

/* declare variables to hold the three test scores, and a variable
to hold the computed average - assume floating point values */

/* prompt and input the 3 test scores */

/* compute the average */

/* write a series of if-statements to determine and print the average
along with the correct letter grade. */

/* close main */

. Compile and Debug: Now compile the program, note error messages, and debug

your program (using vi to make needed changes to the source file. Once the program
works correctly, make a script file to hand in - containing a cat of the program source
file, a compile and several runs. Call the script file 1ab4a.scr.

4.4. THE WHILE LOOP

4.4 'The While loop

Review pages 69-75 (section 3.9) of Deitel before starting this part of the lab.

47

1. Problem Statement: The process of finding the largest number (i.e. the maximum
of a group of numbers) is used frequently in computer applications. For example, a
program that determines the winner of a sales contest would input the number of
units sold by each salesperson. The salesperson who sells the most units wins the
contest. Write the program, using the following outline.

2. Program Development: Following is an outline of the program - fill in the required
C statements to complete the program - then enter the program into source file called
lab4b.c.

/*

/*

/*

/*

/*

/*

/*

/*

put a comment block at the beginning of the program */

insert the needed header files
open the main function
declare a variable to hold the current number of units, and

a variable to hold the maximum number found so far - assume
integer values. Start the maximum with a 0. */

prompt and read in the first value

start a while loop with a stopping condition of value
less than or equal to 0 */

compare current value with maximum value and update
maximum value */

prompt and read in next value */

close the loop */

48

CHAPTER 4. LAB - CONTROL STRUCTURES - 1

/* output the maximum value, and close the main function */

3. Compile and Debug: Once you have created the source file, compile, note error

messages - and use vi to correct the source file. Do this until the program compiles
without errors.

4. Execute: Run the program, and verify that it is working - if there are run-time

errors, fix the problem and recompile and run again.

5. Script: Once the program runs correctly, make a script file called lab4b.scr, con-

taining a cat of the source file, and several runs of the program.

4.5 Another While Loop Problem

. Problem Statement: The process of finding the sum or average of a list of num-

bers is also used frequently in computer applications. For example, a program that
determines the class average for an exam, might input the exam scores one at a time,
counting and summing as it goes. Then it could compute and print the average or
the sum.

. Program Development: Following is an outline of the program - fill in the required

C statements to complete the program - then enter the program into source file called
lab4dc.c.

/* put a comment block at the beginning of the program */

/* insert the needed header files
/* open the main function

/* declare a variable to count the number of exams, and
a variable to sum the exams - and set both of these to 0.
Declare a variable to hold the computed average, and
a variable to hold one exam value.
(Use good variable names!) */

/* prompt and read in the first exam value

4.6. FOLLOW UP 49

/* start a while loop with a stopping condition of value
less than 0 */

/* Count and sum the current exam value */

/* prompt and read in next value */
/* close the loop */
/* compute the average, and display the results */

/* close the main function */

3. Compile and Debug: Once you have created the source file, compile, note error
messages - and use vi to correct the source file. Do this until the program compiles
without errors.

4. Execute: Run the program, and verify that it is working - if there are run-time
errors, fix the problem and recompile and run again.

5. Script: Once the program runs correctly, make a script file called lab4c.scr, con-
taining a cat of the source file, and several runs of the program.

4.6 Follow Up

For practice with vi and with C program statements, do one of the following problems at
the end of chapter 3 in Deitel: problems 13, 25, or 36. Make script files as usual.

4.7 What to Hand In

Submit all of your script files - stapled together as one package-with your name and section
number clearly indicated on the front page. (Due at the beginning of your next lab.)

50

CHAPTER 4. LAB - CONTROL STRUCTURES - 1

Chapter 5

Lab - Control Structures - 11

5.1 Goals

This lab is an exercise to familiarize you with:

e Single, counter-controlled while loops.
e Single for loops.
e Program Development with loops.

5.2 Reference Materials

Chapters 3 and 4 of Deitel.

5.3 Counter-Controlled Loops with the while Statement

1. For a warm up problem, let us construct a program with a counter-controlled while
loop, and look at the loop counter values. Use the following outline as a starting
point.

/* put the usual comment block here */

/* add necessary header files */

51

52

5.4

CHAPTER 5. LAB - CONTROL STRUCTURES - II

/* open the main function */

/* declare a variable to be used as a counter, and give
it an initial value of 0. */

/* Construct a while statement with a to do a loop
as long as the counter is less than 12. */
/* Inside the loop, do the following: */

/* print the value of the counter
one value per line of output */

/* Increment the counter by 1 */

/* After the loop is completed, print out
the current value of the counter. */

/* end main function */

Store the program in file called lab5a.c, compile and run, and make a script file as
usual - called labba.scr.

Make a copy of the first program - copy into file 1ab5b.c. Edit the file and change to
ending value in the while statement to 28, and the increment value in the loop body
to 5. Compile and run and make a script file called 1ab5b.scr.)

Counter-Controlled Loops with the for Statement

. Problem Statement: The local weather station records temperature data on each

hour. Write a programs that will read 24 temperature values for a given day, and
compute and print the high temperature, the low temperature and the average tem-
perature for that day.

. Program Development: Following is an outline for the program; fill in the miss-

ing C statements to complete the program; enter the program into source file called
labbc.c.

5.4. COUNTER-CONTROLLED LOOPS WITH THE FOR STATEMENT 53

/* put the usual comment block here */

/* add necessary header files */

/* open the main function */

/* declare variables for temperature, low temperature, high
temperature, sum, and average. Also declare a variable
to count from 1 to 24. Initialize variables. */

/* print an introductory message - with instructions
for the user. */

/* Set up a for loop to do 24 iterations */
/* read value */
/* add to the sum */
/* update maximum */
/* update minimum */
/* end loop */

/* compute the average */

/* print results */

/* end main function */

3. Compile and Debug: - Once the source file is created, compile and debug. When
the program compiles without errors, test it to verify that it runs correctly - using
your own data.

4. Data: (Note: to make things easier, study section 7.2 (pp. 165-167) of Afzul - on
Unix redirection.) Use vi to create a file called temps.data, and enter 24 temperature
values. Note that data files are not source files - no comments, just data. The data
must be in order, but may be any number of values per line in the file.

5. Execute: Now run the program, using your data file - and verify the correctness of
the results. Then, make a script file called 1abb5c.scr in which you cat the program,
cat the data file, and run the program using the data file.

54

CHAPTER 5. LAB - CONTROL STRUCTURES - 11

5.5 Another Counter Controlled Loop

. Problem Statement: Consider the weather program written in the preceding sec-

tion: sometimes the number of data values is not 24 - there may be some missing data
values, or there may have been extra readings taken on a given day. (Some days there
might be 20 values, other days 24, and some with 27, for example.)

. Program Development: First, copy the source file 1ab5c.c into file 1lab5d.c. Mod-

ify the program so that it first reads in the _number of values - into variable called
Nvalues. Then change the loop so that it counts Nvalues, instead of 24; and change
the calculation for the average.

. Data: Make three data files - called t1.data, t2.data, and t3.data - start each

one as a copy of the original temps.data. Make one file have 20 values, one have 24
values, and the other have 27 values, and put the number of values (20, 24, or 27) at
the beginning of the file.

. Execute: Now run the program on each data file and verify that it works correctly.

Then make a script file, called 1abbd.scr in which you cat your program, and the
three data files, and make the three program runs.

5.6 Follow Up

For additional practice creating your own programsa, do problem 26 at the end of chapter
4 in Deitel - make a complete running program and the usual script file for turn in - with
your written answers to the follow-up questions.

5.7 What To Hand In:

All script file created above - including the homework - stapled as one package - with your
name and section number clearly indicated on the front page.

Chapter 6

Lab - Practice Program

6.1 Goals

The goal of this lab is to give you practice developing and writing a complete C program:

e Develop an algorithm and plan a program based on the algorithm
e Write a C program based on the algorithm
e Identify and correct syntax errors

e Test a program to see if it contains logic errors.

After completing this lab, you will be ready to begin programming project #1.

6.2 Reference Materials

Before beginning this lab be sure you have studied chapters 1-4 of Deitel and that you
have completed all of the preceding labs.

6.3 Problem Description

TheI & S Cube Tax Co. has just hired you to write the software for their tax computation
schedule. They want the program to perform the following actions.

1. Print an informative, but short, wake-up greeting to the tax consultant as they begin
to execute the program.

55

56

CHAPTER 6. LAB - PRACTICE PROGRAM

2. Ask the tax consultant if they are ready for their first client, and wait for the tax

consultant to type 1 for yes or 0 for no. If they type 0, end the execution; otherwise,
begin to input data about the first client’s taxes (described below).

After the first client has been processed, then ask the tax consultant whether they
want to process another client. If they type 0, end the execution. If they type 1,
repeat the processing for this new client. The processing of clients should continue to
repeat until the tax consultant types 0 in response to being asked whether they want
to process a new client. Therefore, the program should handle any number of clients,
maybe 3 on one execution, and 100 on another execution.

. For each client, interactively obtain the following information from the tax consultant,

by a nice, user-friendly interactive session:

(1) the total salary for 2001 for this client

(2) the number of dependents for this client

(3) the total amount of deductions for this client
(4)

4) the amount of income tax withheld in 2001 for this client

. After this information is all input by the tax consultant in response to your program

prompting them for it, then compute the client’s total tax due, or the amount of the
refund.

Some facts that you need to know to compute the tax are the following:

- The allowance per dependent is $2,500.

- The taxable income is computed by subtracting the total deductions and the total
dependent allowance from the salary.

- Note that if the taxable income is negative, it should be set to 0.

- The tax is computed using the following tax table. !

Taxable Income | Tax
less than 4000. | 0.00

4000. to 9000. 0.00 plus 1% of income over 4000.
9000. to 18000. | 50.00 plus 2% of income over 9000.

over 18000. 230.00 plus 3% of income over 18000.

5. Print out a record for the client to the screen. A client’s record should look like the

following format:

2k 3k 3k 3k 2k 3k 3k >k ok 3k dk ok >k 2k dk 3k ok 2k dk 3k ok >k k ok >k >k >k 2k 3k 3k ok >k dk 3k 3k >k >k >k dk 5k %k %k %k %k %k

ISince the tax function is a continuous function, it matters not which bracket you include 9000 in, for

example.

6.4. PROGRAM DEVELOPMENT

I & S Cube Tax Co.

total salary: $32500.
number of dependents: 3
total dependent

allowance: $7500.
amount of deductions: $10125.
taxable income: $14875.
taxes from tax table: $167.
total tax withheld: $220.
amount of refund: $52.

3k 3k 3k ok 2k 3k 3k >k ok 3k dk 3k ok ok k 3k >k 3k 3k 3k ok >k 3k 5k >k >k k 3k 3k 3k ok dk ok 3k 3k >k >k >k ok 5k 5k >k %k %k %k

day for the tax consultant.

00

6.4 Program Development

57

. After all clients for today have been processed, print a friendly message to end the

Follow the general strategy that we have used in previous labs for developing programs.
Here is a partial outline to get you started.

/*

/*

/*

/*

/*

/*

the beginning comment block...

and header files */
begin main */

make some variables */

display a startup message */

start while loop - tax consultant loop */

/*prompt for client info*

58 CHAPTER 6. LAB - PRACTICE PROGRAM

/* compute tax info, and
display results */

/* end while */

/* end program */

When you are ready to type in your program, enter your code into file taxes.c.

6.5 New and Improved Version

Copy your program and extend it in two ways.

(1) Extend the program so that it handles erroneous input nicely. That is, whenever the
tax consultant inputs an invalid number for any of the questions, your program should tell
the user that the input is wrong and repetitively prompt for a legal value until they input a
legal value. Hint: This will involve adding a WHILE or DO-WHILE loop around the code
that int eractively inputs a value.

(2) Extend the program to display a total number of clients processed and the total tax
collected for that day. By total tax, we mean both the tax due and the taxes withheld.
Have your program print these totals after the last client record is printed.

Note: You can assume that the tax consultant inputs the correct type for each question
, that is, numbers, not letters. You should check to be sure that the input is not negative
numbers for the salary, deductions, and tax withheld, and that the number of dependents is
at least 1. You should also make sure that the tax consultant inputs either 0 or 1 in respon
se to whether they want to process another client.

6.6 What To Hand In

Note: Remember to follow the programming guidelines listed in Part III.

Run your program several times and satisfy yourself that it produces correct answers. Be
sure to try typical values for the answers to the program’s questions, as well as legal, but,
what we call boundary values, such as 0 and 1 for some of the answers. For example, try 1
for number of dependents, and try a combination that produces a negative taxable income
(the program should use 0 in this case!).

When you are sure your program works, make a script file by doing the following;:

6.6. WHAT TO HAND IN

script taxes.scr
cat taxes.c

cc taxes.c

a.out

exit

Show executions with the following input cases:
(1) only one client

(2) no clients

(3) 3 clients

with the following purchases:

client <client client

value value value
salary: 40500 12400 22100
dependents: 4 1 3
deductions: 8950 2211 3505
tax withheld: 550 125 53

Hand in a copy of your script file printed on a laser printer.

59

60

CHAPTER 6. LAB - PRACTICE PROGRAM

Chapter 7

Lab - User-Defined Functions

7.1 Goals

This lab is an exercise to familiarize you with:

e How to make and use functions.
e Function Definitions, Prototypes, and Calls.
e Passing information to functions via parameters and global variables.

e Program Development with Functions.

7.2 Reference Materials

Chapter 5 of Deitel.

Afzal, Chapter 6.

7.3 Basic Function Concepts

1. There are two kinds of functions: those which return a value (of types like float, int,
double, ...) and those which do not return a value (type void). IF you need a value
(e.g., a numerical value) RETURNED from a function (lets name it funl to be able
to show examples):

(a) It must have a suitable type (other than void), e.g.,

float funl(int n, float x){...};

61

CHAPTER 7. LAB - USER-DEFINED FUNCTIONS

AND

(b) You will NOT get any use of its returned value if your call on it (say in main or
in some other function) looks like:

funl1(6, 42.0);

INSTEAD you have to assign its value to some variable, e.g., as in:
y = funl(6, 42.0);

Of course, then, y has to have been typed appropriately.

2. If you have some values of variables assigned in one function, and you need to USE
those values in some OTHER function, then you need to supply those variables as
ARGUMENTS in a call of the SECOND function. Here’s an example. Suppose in
main we have:

int n;
float x,y;

Suppose main assigns values to n, x, and y AND that fun2 needs to know these values
(and no other values) to do its thing. Lets suppose for THIS example, fun2 returns
nothing. Then its typing could look like:

void fun2(int m, float u, float v){...};
AND, when main calls fun2 the call (in main) would look like:
fun2(n, x, ¥);
It should NOT look like:
fun2();

since, then, the values fun2 needs to do its thing are not made available to it (and
you'd get an error message about mismatch in number of arguments). (To get rid of
the argument mismatch error, you could type fun2:

void fun2(void){...};

but, then, fun2 does NOT get the information about the values of n,x,y it needs, SO
give fun2 3 arguments - each place instead of 0 arguments each place.)

The function call should also NOT look like:

fun2(int n, float x, float y);

7.4. FUNCTION DEFINITIONS, PROTOTYPES, AND CALLS 63

7.4

2.

since the typing of arguments is done in the function prototype and function header;
NOT in the function CALL.

. Be sure to type any local variables you are using INSIDE a function; the typing for

them must be done, then, INSIDE that function to which they are local. Here’s an
example.

Suppose you want a function definition like:

float fun3(int k, float z){
answer = k *x z;
return answer;}

THIS will not work; however the following will work.

float fun3(int k, float z){
float answer;
answer = k *x z;

return answer;}

provided you handle the prototyping, etc.

Now, with these important background points covered, let’s try some lab exercises.

Function Definitions, Prototypes, and Calls

. Problem Statement: We wish to process purchase information for a retail music

store. The items are CD’s with various price levels: A - 12.99, B - 13.99, C - 14.99, S -
9.99, D - 16.99. The customer will enter the code and the number of items purchased;
the program will compute the total price.

Program Development: We’'ll use two functions to orgranize the program solution:
e A void function with no arguments - called showInstructions - which displays

a helpful message to the user - explaining how to use this program.

e A float function with two arguments (a char code for the cd price level, and an
int for the number of c¢d’s purchased) - called computePrice - which computes
and returns the total price.

Here is a basic outline for the program; fill in the missing C statements to complete
the program. Then enter your code into source file called 1ab7a.c.

64

CHAPTER 7. LAB - USER-DEFINED FUNCTIONS

/* put the usual comment block here */

/* add includes for the necessary header files */

/* put function prototypes here: one for function
called showInstructions, another for function
called computePrice. */

/* open the main function */

/* declare variables for number of cd’s, the cd code,
and total price */

/* Use your showInstructions function to display
instructions to the user */

/* prompt and read in the number, and the code *

/* compute the total price, using your computePrice function *

/* Display results - the number, the code, and the total price */
/* close the main function */
/* user-defined function definitions usually

follow the main() definition */

/* open the showInstructions functions */

/* write the statements for this function *

/* close the showInstructions function */

7.5. A PRACTICE PROGRAM 65

/* open the computePrice function */

/* use a switch statement to compute and return
the total price, based on the cd code */

/* close the computePrice function */

3. Compile and Debug: Compile your program and note any error messages - debug
until the program compiles without errors.

4. Execute: Once your program compiles without errors, run the program several times
to verify that it runs correctly. Then make a script file called 1lab7a.scr in which you
cat the program, and show several runs.

7.5 A Practice Program

1. Problem Statement: A prime number is a positive integer that is divisible only by
1 and itself. For example, 2, 3, 5, 7 are prime numbers, but 4, 6, 8, 9 are not. Write
a program to find prime numbers .

2. Program Development: It is convenient to have a function that can test a single
number for prime-ness, called isPrime, with one int argument, and returning 1 if
prime, and 0 if not prime. First write this function and test it with a small main
(sometimes called a ”driver” program). Here is an outline to start you off.

/* the usual comment block goes here.... */

/* and header files */

/* then function prototypes */

int isPrime(int);

!This exercise is based on problem 27 in Chapter 5 of Deitel

66

CHAPTER 7. LAB - USER-DEFINED FUNCTIONS

/* then open main */

/* make a variable to hold an integer;
prompt and read in a value */

/* us isPrime to test for prime-ness
and output an appropriate message */

/* close main */

/* definition of isPrime goes here: */

int isPrime(int number) {

}

/* end of program */

Enter your program into source file called 1ab7b.c.

. Compile and Debug: Compile and debug until the program compiles without errors.

Then make a script file called 1ab7b.scr in which you cat your program and run it
several times.

. Modify: Copy file 1ab7b.c into file lab7c.c, and make the following modifications.

(a) Change main so that it checks a range of integers form nStart to nEnd (eg. 300
to 500), and prints out just those integers that are prime. Have it prompt the
use for the values of nStart and nEnd.

(b) Change isPrime so that it check divisors from 2 up to the square root of the
number?.

. Compile and Debug: Once these changes have been made, compile and debug your

new program, until it compiles without errors.

. Execute: Verify that your new program works - by giving it a range of small numbers

that you can verify by hand. Once you have a working program, make a script file
called 1ab7c.scr in which you cat your program and run it 3 times with the following
ranges.

2Can you prove that this is sufficient to determine prime-ness?

7.6. FOLLOW UP 67

(a) 50 to 100
(b) 10000 to 10100
(¢) 2000000000 to 2000000100

7.6 Follow Up

For additional practice, do problem 15 at the end of chapter 5 in Deitel. 3.

7.7 What to Hand In

Hand in all of the script files from above - including your homework, stapled as a single
package, with your name and section number clearly indicated on the front page.

3When using functions from the math library, don’t forget to include the header file math.h, and, don’t
forget to compile using the -1m switch.

68

CHAPTER 7. LAB - USER-DEFINED FUNCTIONS

Chapter 8

Lab - Debugging

8.1 Goals

This lab is an exercise to familiarize you with:

e Helpful Hints on Debugging Programs.

8.2 Reference Materials

Chapter 13 of Deitel.

The 1int manpage.

8.3 Errors you may encounter in a C program

While writing C programs, you will encounter many kinds of errors. The first and the
easiest to find and fix are syntax errors found at compile time. Almost all of you must
have seen these errors. Then there are semantic run-time and logical errors which are not
as easy to find and fix. These are the errors that occur after your program compiles. These
result in incorrect output. In this lab we shall discuss debugging a program. The term bug
is based on thinking that bugs or insects have gotten into your program, and that’s the
reason for the error.! The very first computers were so huge that one time an error was
actually caused by a moth that flew inside and appropriately the term debugging refers to
taking the bugs out of the computer. In the context of a bug in your program, debugging
would mean removing the logical error that is causing the program to run incorrectly.

'For a little note on the first “bug”, see http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html

69

70 CHAPTER 8. LAB - DEBUGGING

8.4 Debugging By Tracing Execution

The easiest way to debug a program is to place extra printf statements in your program so
that you can trace the execution of your program and watch how the value of each variable
changes with the execution of each statement in your program. There is also a way to run
your program step by step using a debugger (eg., dbx), however for this lab we shall only
use printf statements to debug a program.

1. Copy the file debugl.c into your own home directory. This file contains the following C
program:

/***

* Programmer: *
x Course: CISC105 *
x Section : *
* Lab Time: *
x File : debugl.c *
* Date: *
* Title: Debugging *
* *
K ok ok Kk KK R KKK R KK R R KK KKK R KK R R K KRR R K KR R KKK R KK R R K KR R R KR R KRR kK K R Rk K Rk
Y
#include <stdio.h>
/* This program focuses on debugging common errors via tracing. *
* Sum the even integers < n, i.e., output the sum 0+2+4+...4m *
* where m is the largest even number < n, n is input by the user *
*/
main () {

/*xdeclaration of variablesx/

int number; /* user —entered value of nx/

int i = 0;

int sum = 0; /* sum of even integers >0 and < n %/

printf (" Enter a number: 7);
scanf ("%d”, number); /* read the number n x/
while (i < number); {
sum = sum + i;
}

printf (” The sum of the even numbers < n is ”

, sum);

This program contains several common programming errors. DO NOT CORRECT ANY
ERRORS that you may notice. Now compile the program. Note that this program compiles
fine. If you run this program, you will notice that this program stops with an error. Here
is an example run of this program:

8.4. DEBUGGING BY TRACING EXECUTION 71

Enter a number: 5

There may be a segmentation fault error message - a message from the operating system
(UNIX), indicating that your program has tried to access some part of the computer memory
that it is not allowed to access. Now, we want to determine which is the last statement
executed when the program had a segmentation fault. Normally, we want to find out exactly
on which statement the program stops. So, if we put printf statements throughout the
program, we should be able to find out which line is causing the problem. The printf
statements should indicate the following of information: (1) How far did execution get?
That is, only the printf statements that are actually executed before the error occurs will
be printed. Others will not be printed. (2) What were the values of the important variables
as the program executed?

Here is one way to put in these debugging printf statements:

#include <stdio.h>

#define DEBUG 1

main()

{

/*declaration of variables to be used in this computation*/
int number;
int i = 0;
int sum = O; /* sum will store the sum of even integers >0 and < n */
if (DEBUG) printf("DEBUG.1: Execution reached just before interactive input session. \n");
printf ("Enter a number: ");
scanf ("%d", number); /* read the number in */

if (DEBUG) printf("DEBUG.2: Just after interactive session, sum = %d \n", sum);

while (i < number);

{
if (DEBUG) printf("DEBUG.3: Just beginning loop body, sum = %d i=%d\n", sum, i);
sum = sum + i;
if (DEBUG) printf("DEBUG.4: After sum computation, sum = %d i=%d\n", sum, i);

}

if (DEBUG) printf("DEBUG.5: Just after loop exit, sum = %d\n", sum);

printf ("The sum of the even numbers < n is ", sum);

IMPORTANT: Every printf used for debugging must end with \n.

2. Copy the original erroneous program into a new file called debug-new.c, and modify the
new file by typing in the 5 DEBUG statements and the statement #define DEBUG 1 in the

72 CHAPTER 8. LAB - DEBUGGING

indicated places as above. Compile and execute the modified program. If done correctly,
your program should output:

DEBUG.1: Execution reached just before interactive input session.
Enter a number: 5
Segmentation fault

Since DEBUG.2 never got printed, we know the error occurs after printing DEBUG.1 and
before DEBUG.2. The error must therefore be either in the printf or the scanf statement
of the interactive session. Create a script file that cat’s this version of your program before
doing any bug fixes, removes a.out, compiles and executes this version. Print out this script
file for grading.

3. Determine the error causing the sementation fault, and fix ONLY this error. Now compile
and run the program again. You will notice that your program seems to be "hanging” just
after the DEBUG.2 statement is printed. Your program is in a state of infinite execution.
The only way to stop it is to hit the Control key SIMULTANEOUSLY with the ”c¢” key.
This is called hitting Control C, sometimes written in shorthand as C. This should bring
back the Unix prompt. The DEBUG.3 statement never got printed. This means that the
while loop is being executed indefinitely, but it appears that the statements which look like
they are inside the loop are never being executed. This is called an infinite loop.

4. Look carefully at the while loop condition line, and fix the error causing this symptom.
Compile and execute this version of your program. Your program is still in an infinite
loop, but now the loop body statements are clearly being executed over and over again, as
the DEBUG.3 and DEBUG.4 statements are being printed continuously. Stop the infinite
execution again by hitting Control C. Since DEBUG.5 never gets executed, we know that
the error occurs in the loop body.

5. Look carefully at the values of sum and i in the DEBUG.3 and DEBUG.4 statements
that were printed. Fix the one error that causes the loop to go indefinitely, and compile
and run again. To test your program, use a small input value so that you can compare the
output of the program with your own hand calculations. You will notice that i is getting
incremented properly inside the loop, but the value of sum is clearly wrong. This is a logical
error. Does the value of sum go wrong inside the loop, or before the loop?

6. Look closely at DEBUG.2, DEBUG.3, and DEBUG.4 output. First, decide if the value of
sum is okay before the execution of the loop. Then see if only the EVEN numbers between
1 and n, not including n, are being added. Fix the error in the body of the loop to obtain
the correct value of sum in the DEBUG.5 statement after the loop exit. Compile this new
version of your program and execute to insure that the value for sum at DEBUG.5 is correct.

7. Finally, you will notice that the original (non-debugging) printf after the loop body,
which prints out the value of sum, is incorrect. Using our DEBUG statements, we know this
problem occurs after DEBUG.5 Find this last error, and fix it. Compile this final version of
the program, and execute it with the values 5, 8, and 0. Check your answers against hand

8.5. USING LINT TO FIND LOGICAL ERRORS 73

calculations. Create a script file that cat’s this version of your program, removes a.out,
compiles it, and executes it with these three values as input. Print out this script file for
grading.

8. Now, turn off the debugging by editing one line of your program file, changing #define
DEBUG 1 to #define DEBUG O Recompile and run this version to get a clean output for your
program execution (i.e., without any debugging print’s). Create a script file that compiles
and executes this version for the input 8 only. Print out this script file for grading. It need
not include a cat of your program.

8.5 Using lint to find logical errors

There is another program available called 1int which helps you find errors in your program.
It attempts to detect the features in your C program that are likely to be bugs. These are
potential logic errors; they are not syntactic errors that the compiler will find. For example,
use lint on the original program that we gave you (by typing 1int debug.c), you will get
the following warnings (note: depending on which machine you execute 1int, you may see
some variations of these messages):

debug.c(27): warning: number may be used before set

debug.c(33): warning: main() returns random value to invocation environment
printf returns value which is always ignored

scanf returns value which is always ignored

You may not fully understand the messages; that’s OK. Most importantly, look at the lines
where warnings are issued; in this case, use the editor to look at lines 27, 33 because they are
the lines indicated by lint in the message above as possible problems. Assume something is
wrong with these lines and try to determine what is wrong. If you do, great. If not, simply
go on for now.

From now on in CISC105, you should ALWAYS run lint on your programs BEFORE you
execute them to help you find possible logic errors.

8.6 Tracing Programs with Function Definitions

1. Copy the file debug?2.c into your own home directory. This file contains the following C
program:
/***

* Programmer: *

* Course: CISC105 *

74 CHAPTER 8. LAB - DEBUGGING

* Section : *
* Lab Time: *
x File : debug2.c *
* Date: *
* Title: Debugging *
k *
* This program focuses on debugging functions via tracing. *
% *
3k 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k 5k >k 3k 5k >k >k 5k 5k >k 5k sk >k 5k sk >k 5k sk >k 3k sk >k 3k >k 3k sk >k 5k 3k 3k 35k sk 5k 5k >k >k 5k >k 5k 5k %k 5k >k 3k 5k >k 3k >k >k 5k %k >k %k %k >k k kokkk

*/
#include <stdio .h>

/* This program computes and prints the square of the numbers 1 throughx
* 10, inclusive . It prints the number and the square of the number onx
* a line, then goes to the next number. The function square_it is *
x called to compute the square as a number, so it is called 10 times. x

*/

main () {
/xdeclaration of variablesx/
int number; /xrepresents squared valuex/
int i = 0; /*loop index variable x/

for (i=1; i<=10;i++) {
number = square ();
printf (” %d %d\n”,i,number);

}
}

/#function definition for function square which squares an incoming integer
and returns this valuex/
square_it (int arg); {
int result;
result = data x 2;
return result ;

}

2. Compile this program. It contains several compiler errors and warnings. Examine
the lines that are indicated in the compiler errors. Warnings of the form, debug2.c:33:
warning: data definition has no type or storage class usually indicate that some
name that you are using in the program has not been declared before you are using it in
this line.

3. Check that all variables that appear on these lines have been declared, and all function
names on these lines have been declared by a function prototype. Fix ONLY these errors
at this time, and try to recompile your program. Be careful that you determine whether
a variable is a variable name or parameter name, and make the corrections appropriately.
You are probably still having almost the same errors, in fact, maybe even more errors. It
appears that the name ”data” is not being seen as being declared. It is meant to be a formal

8.6. TRACING PROGRAMS WITH FUNCTION DEFINITIONS 75

parameter of the function square_it. There is also a message of the form syntax error
before {. This should indicate that there is an error in the first line, i.e., the function
header, of the function definition.

4. Examine the function header line, and fix the error. Recompile again. This time, there
should be no compiler errors. But, now when you compile, you should be getting an error
that looks like:

1d: Undefined symbol
_square
collect2: 1d returned 2 exit status

This means that you have used the name square as a function call somewhere in your
program, and there is no function in your program file or the C standard library with this
name, so the loader could not figure out what function is being called. Fix this error in
your program, and recompile again.

5. Now, you should be getting the error:

debug2.c: In function ‘main’:
debug2.c:25: too few arguments to function ‘square_it’

This indicates that the number of parameters passed to the function square_it in a call
to this function does not match the number of parameters declared for square it in the
prototype and function definition. Fix this problem in the call to square_it. Your program
should compile with no errors.

6. Now try executing your program. You will notice that it does not print the correct
answers for the square of each number. Insert 2 DEBUG statements into the function
definition for square it. Also, insert the #define DEBUG 1 statement in the appropriate
place at the top of your program to turn on the debugging feature. DEBUG.1 should go just
after the local declarations of square_it, and DEBUG.2 should go just before the return
statement. Both debugging printf’s should print out the value of data and result to check
what is happening inside square_it. DEBUG.1 tells you that the correct number is passed
in as a parameter. DEBUG.2 tells you that the correct result is NOT being calculated. Fix
this logical error inside square_it. Insert a debugging statement called DEBUG.3 in the
main program, just after the call to square_it which prints out the value returned from
square_it, namely the variable number. Recompile this program and execute it. When
you are satisfied that you are getting the correct values, change the #define statement to
TURN OFF debugging, leaving your debugging statements in the program, create a script
file that cat’s this version of your program with the DEBUG printf’s in it, removes a.out,
compiles your program, and executes it. Print out this script file for grading.

76 CHAPTER 8. LAB - DEBUGGING

8.7 What to Hand In

Script files as created above.

Note: You are now ready to begin work on Project #2.

Chapter 9

Lab - Arrays - 1

9.1 Goals

This lab is an exercise to familiarize you with the following:

e array processing.

e Handling end-of-file.

9.2 Reference Materials

Chapter 6 of Deitel (pp. 196-248).
Page 421 of Deitel.

Afzal, Chapter 7.

9.3 Simple Array Processing

Be sure to read Chapter 6 of Deitel before you begin. Remember that arrays contain all
the same kind of data (all ints, all floats, chars, etc.). Arrays are a fixed size - and the size
must be a constant. The first array position is 0 (not 1); and the last array position is one
less than the size. For example, if A is an array of size 10, then

Afo], Al11, A[2], ..., A[9]

are the elements of A.

7

78

CHAPTER 9. LAB - ARRAYS -1

1. Problem Statement: Write a simple program to illustrate declaration and initial-
ization of arrays, and the use of for loops to output array elements.

2. Program Development: Following is an outline for a C program - fill in the miss-

ing C statements to complete the program. Enter your code into source file called
arrayl.c.

/* put the usual comment block here */
/* include necessary header files */

/* open the main function */

/* Use one statement to declare a character array
of size 5 - called Vowels - and initialize the elements
to ’a’, ’e’, ’i’, 07, ‘u’ */

/* Use one statement to declare an integer array called
primes with size 10, and initialize the elements to
2, 3,5, 7, 11, 13, 17, 23, 29, 31. */

/* Use one statement to declare an array of 8 floats called
Rates with initial vales of 1.25, 3.5, 3.92, 4.75, 5.3,
6.25, 7.5, 8.15 */

/* Write 3 separate for loops to output the values exactly as follows:
/* one for loop here: */
Vowels = a, e, i, o, u.

/*another for loop here: */

Primes:
primes[0] =
primes[1] =
primes[2] =
primes[3] =
primes[4]

~N 0w N

11

9.4. AN ARRAY APPLICATION 79

primes[5] = 13
primes[6] = 17
primes[7] = 23
primes[8] = 29

primes[9] = 31

/* and another one here: */
Rates = 1.25 3.50 3.92 4.75 5.30 6.25 7.50 8.15

*/

/* close the main function */

3. Compile and Debug: Compile and debug your program until it works correctly.

4. Execute: Make a script file called arrayl.scr in which you cat your program, and
run it.

9.4 An Array Application

1. Problem Statement: Another common application in software is to process a list
of measurements. A program is needed that can process up to 200 measurements (
no more than 100 positive values, no more than 100 negative values). The program
needs to store to positive measurements in one array, and the negative measurements
in another array; and then output the two arrays in side-by-side columns®. Note: you
may use only the two arrays mention - no others! The output could look like this:

2.5 -3.8
1.2 -2.6
3.4 -4.2
3.5 -1.1
or this:
2.5 -3.8
1.2 -2.6
3.4
3.5
or this:

'If you are having difficulty with the output, you may simplify it by printing the arrays in sequence (one
after the other) rather than side-by-side. To receive full credit, you must eventually solve the side-by-side
problem.

80

CHAPTER 9. LAB - ARRAYS -1

2.5 -3.8
-2.6
-4.2
-1.1

In fact, one of the arrays might even be empty!

2. Program Development: Following is an outline for part of the program solution.
Complete the program to solve the problem. Then enter your code into source file
called array2.c.

/*

/*

/*

/*

/*

*/

/*

/*

the usual comment block ... */
and header files ... */
define a name for the constant 100 - call it MaxSize

open the main function */

declare two float arrays of size MaxSize - named PosArray
and NegArray and declare two counters: nPos and nNeg with
initial value of 0 and declare a single float to hold an
input value */

set up a loop to read a single float value until end of
file is reached - use one of the following techniques:
while(!'feof(stdin))
or
while(scanf("%f", &value) !'= EOF)

/* if the value is positive, store it in the PosArray */

/* if the value is negative, store it in the NegArray */
close the end-of-file loop *

write loops to output the arrays */

9.5. FOLLOW UP 81

/* close the main function */

3. Compile and Debug: Compile and debug your program until it compiles without
errors.

4. Test Data: We will need to create several data files in order to thoroughly test the
program - they don’t have to be large - maybe 20 values or so. Create five test data
files, each with exactly one of the following properties:

a) the number of positive and negative values is the same

(
(b) there are no negative values
(

)

)
(c) there are no positive values
d) there are fewer negative values than positive ones
)

(e) there are fewer positive values than negative ones

5. Execute: Run your prgram on each test data file; fix any problems; verify that your
program runs correctly for all of the test cases. Then make a script file in which you
cat your program and the five test data files, and show five runs of your program - on
each data file. Call the script file array2.scr.

9.5 Follow Up

For additional practice with arrays, and creating your own programs, do problem 15 at the
end of chapter 6 of Deitel.

9.6 What to Hand In

Hand in all script files created above, including the homework, stapled together as one
package, with your name and section number clearly indicated on the front page.

82

CHAPTER 9. LAB - ARRAYS -1

Chapter 10

Lab - Arrays - 11

10.1 Goals

This lab is an exercise to familiarize you with:

e More array processing.
e 2-dimensional array processing.

¢ Passing arrays as parameters to functions.

10.2 Reference Materials

Chapter 6 of Deitel.

10.3 A 2-Dimensional Array Example

1. Problem Statement: A magic square is an integer array (2-dimensional) with the
same number of rows and columns (i.e., square), with each cell containing a positive
integer, and with the property that the sum of each row, each column, and each
diagonal is the same number. ! Here is an example of a 3 by 3 magic square:

618
71513
21914
!This number is called the magic number. For a 5 by 5 square, using numbers 1, 2, 3, ..., 25, the magic

number is 65. (Can you prove this?) What is the magic number for a 4 by 4 square filled with 1, 2, 3, ...,
167

83

84 CHAPTER 10. LAB - ARRAYS - 11

2. Algorithm: An algorithm to generate some magic squares is available - it assumes the
size of the row (or column) is odd. To keep things concrete, we’ll assume a 5 by 5
square, and fill the cells with numbers 1, 2, 3, ... , 25. The algorithm goes like this:

e start at any cell and put a 1 there

e move to the new cell - by moving to the right one column, and up two rows - if
you move past an edge, just wrap around to the other side.

e if the new cell is not occupied, place the next number there; otherwise, go back
to the previous cell, and drop down to the cell under that one, and place the
next number there.

e repeat steps 2 and 3 until all cells are filled.

For example, here is a 5 by 5 with the first 3 cells marked - follow the algorithm to
complete the magic square.

3. Program Development: Develop a program based on the algorithm; remember
to declare an array with 5 rows and columns, declare variables to hold the starting
position, and prompt and read in the starting position from the user; make a loop to
count from 1 to 25; within the loop mark the cell with the counter value, and move to
the new cell - based on the algorithm. Once the square is complete, print it so that it
looks nice.

Store your program code in source file called magic.c.

4. Execute: Compile and debug magic.c. Once it compiles without errors, run it
and verify that it runs correctly - fix any problems. Then make a script file called
magic.scr in which you cat your program, and run it 3 times - with a different starting
position each time.

10.4 Functions and Arrays

Remember the following about arrays as arguments to functions. If a function is defined
to process an array (say an int array), then the header must contain something like the
following;:

void aFunction(int x[], int Nx)

Then, to use the function, your call would look like:

10.4. FUNCTIONS AND ARRAYS 85

aFunction(myArray, nData)

1. Problem Statement: A list of integers that reads the same forwards and backwards
is called a palindrome. For example, the list 13, 32, 44, 32, 13 is a palindrome; but
the list 2, 4, 6, 8 is not. We need a program to check for “palindrome-ness”.

2. Program Development: We’ll write some functions to organize the program so-

lution. Here is a sketch of what you are to do. Fill in the missing statements, and
create a source file called palindrome.c.

/* the usual comment block ... */

/* and header files */

/* prototype TWO functions: Reverse - which takes an integer
array of size N, and copies it in
reverse order into a second integer array
Compare - which compares two integer
arrays of size N, and returns 1 if they
are exactly the same, and O if they are not.
/* open the main function */

/* declare two integer arrays */

/* prompt and read in a list of integers
from the user */

/* Use Reverse to put the reversed array into your
second array */

/* Use Compare to determine if the two arrays are
the same - and hence determine palindrome-ness */

/* print out an appropriate message */

3. Compile and Debug: Compile and debug your program until it compiles without
€IrTors.

86 CHAPTER 10. LAB - ARRAYS - 11

4. Execute: Run your program and verify that it runs correctly. Then, make a script
file with a cat of your program and three runs - illustrating that the program works.
Call the script file palindrome.scr.

10.5 What to Hand In

Hand in the script files from above, stapled as a package - with your name and section
number clearly indicated on the front page.

Chapter 11

Lab - Call-by-value and
Call-by-address

11.1 Goals

This lab is an exercise to familiarize you with the following:

e Using pointers to accomplish call-by-address parameter passing.

e (Call-by-value versus call-by-address parameter passing.

11.2 Reference Materials

Chapter 7 of Deitel.

11.3 Call-by-Value versus Call-by-Address

This lab demonstrates that a calling routine can pass its actual parameters to a function’s
formal parameters in one of two ways: call-by-value or call-by-address. Using call-by-value,
the called function gets a COPY of the actual parameter. Any changes that the function
makes are to the COPY; thus the original value of the actual parameter in the calling
routine is NEVER changed. (No side effects.) This is what we have seen so far in our
passing of parameters (other than arrays) to functions.

Using call-by-address, the function receives an ADDRESS of the actual parameter. The
function cannot change the address, but by using indirect addressing, it can modify the

87

88 CHAPTER 11. LAB - CALL-BY-VALUE AND CALL-BY-ADDRESS

original actual parameter in the calling routine. (Yes, side effects.) Independent of call-by-
value or call-by-address, a function can return a value using the return statement.

1. Copy the file swapper.c into your own home directory. This file contains an incorrect
solution to defining a function that takes takes two parameters, and swaps their contents if
the first parameter is smaller than the second parameter. Compile and execute the program
as it is now, noting that the output is NOT correct.

This solution is incorrect because the programmer (i.e., me) did not take into account that
(EXCEPT FOR ARRAYS), by default, C passes actual parameters to a function using
call-by-value. Therefore, even though the values of a and b seem to get swapped within the
function interchange, in fact, back in the main program, the function call has no effect on
a and b. To obtain the effect of call-by-address parameter passing in C, you need to use
pointers. This is explained in Chapter 6 of your textbook.

/***

* Programmer: *
* Course: CISC105 *
* Section: *
* Lab Time: *
x File : swapper.c *
* Date: *
x Title: Call by Value versus call by reference *
* *
K KK K K KKK R K K KKK KR K K KKK K R R K K KKK KR K R KK KKK K K K K K KK KK K R R K KKK K R K
*/
#include <stdio .h>
/*function prototypes %/
int interchange (int, int);
main () {
int
a,b, /* used to test function interchange x/
didSwapQOccur; /x* indicator if function did the swapx/
a = 6; /* assign arbitrary values in order to test interchange x/
b = 50;

printf (” Main: Before call to function: a=%d b =%d\n”,a,b);
didSwapOccur = interchange (a,b);
printf (”Main: After call to function: a=%d b=%d\n”,a,b);

if (didSwapOccur == 1)
printf (" Main: interchange was made\n”);
else

printf (" Main: no interchange was performed\n”);

11.4. EXPLICIT RETURN VERSUS SIDE EFFECTS 89

/******>I<>I<>I<>I<>I<>I<>I<>I<***

* Programmer: *
* Function: interchange *
* Description : *
* This function compares its two formal parameters x and y. If the x
* first is smaller than the second, the values are swapped, *
* otherwise they are left alone. *
* Return values: *
* 0 if no swap occurs *
* 1 if swap occurs *
st sk ok o ok ok ok sk ok ok R Rk ok sk sk ok R R R Rk sk sk ok ok R R kK kKR R Rk sk sk sk ok ok sk sk sk ok sk Rk stk sk kR ok stk ok ok ok ok sk ok ok ok o

int interchange (int x, int y) {

int
temp ; /* temporary location needed to perform a swap x/
if (x<y){
temp = X; /* x is less than y, so swap the two values */
X =Y
y = temp;

return (1);

}

else
return (0); /* x is not less than y, so no swap needed x /

}

2. Modify the program so that the actual parameters a and b are passed using call-by-
address rather than call-by-value, thus allowing the effects of function interchange to be
felt by the main program. Be sure to also modify the comments accordingly.

Compile and run the new version of the program. The corrected program’s output should
look something like:

6 b =50
50 b =26

Main: Before call to function: a
Main: After call to function: a

Main: interchange was made

Create a script file that cat’s your modified program, removes a.out, compiles the program,
and runs it. Name this script file swapper.scr. Print this script file for grading.

11.4 Explicit Return Versus Side Effects

This section of the lab demonstrates that under many circumstances, a function can be
accomplished in either of two ways: (1) call-by-value parameters with an explicit return
value, or (2) call-by-address parameters that change the value of the parameter, and no
explicit return.

90 CHAPTER 11. LAB - CALL-BY-VALUE AND CALL-BY-ADDRESS

1. To your program file above, add a function definition (and corresponding prototype) that
takes an integer call-by-value parameter, and explicitly returns the square of the parameter
value. That is, add a function definition called square by _value which can be called by
calls of the form:

printf ("The square of %d is ’%d\n",num,square_by_value(num));

Add an interactive session to get a value from the user for the variable num, and a printf of
the form above to the main program in order to test your new function.

2. Now, add another function definition (and corresponding prototype) that takes an integer
call-by-address parameter, and computes the square of that parameter WITHOUT a return
statement. That is, add a function definition called square_by_address which can be called
by calls of the form:

printf ("The square of %d ", num);
square_by_address(&num); /*call the function */
printf (" is %d\n",num); /*print the value of the actual parameter after the callx/

Add the above sequence of statements to your main program after the statements that call
the square_by_value function to test your new function with the same value for num.

When you are certain that your new version of the program achieves all of the tasks above,
create a script file that cat’s this program, removes a.out, compiles this program, and
executes it with the input number 9 and then with the number 6. Name this script file
lab10-2.scr. Print out this script file for grading.

11.5 A Small Practice Program

1. Problem Statement: Several 3-dimensional objects will be used in a program:
cubes, right circular cylinders, and spheres. For each of these objects we will need to
compute the volume and the total surface area - using a single separate function fr
each type of object.

2. Program Development: Following is an outline for the program; complete the
missing C statements and create file called shapes.c.

/* the usual comment block here....*/

/* and header files (don’t forget the math library) */

11.6. WHAT TO HAND IN 91

/* function prototypes for 3 functions:
getCubelnfo
getSpherelnfo
getCylinderInfo

using call-by-value for the object parameters (eg. radius of sphere),
and call-by-address to return the volume and surface area. */

/* open main */

/* declare variables for radius and height, and volume and surface
area, and a variable to hold the shape type (char) */

*/ start a while loop (use shape = ’x’ to stop) */

/* make a switch statement to switch on shape type:
s for sphere, c for cube, and r for cylinder. for each case,
prompt for the relevant data, then call the appropriate '"get"
function to compute the volume and surface area, and then output
the results. */

/* close the loop */

/* close main */
/* put your 3 function definitions here. */

3. Compile and Debug Compile and debug your program until it compiles without
errors.

4. Execute: Run the program, and test using different data values, and verify that
it runs correctly. Then make a script file called shapes.scr in which you cat your
program and run it - showing that each case works.

11.6 What to Hand In

Hand in your three script files, stapled as one package, with your name and section clearly
indicated on the front page.

92

CHAPTER 11. LAB - CALL-BY-VALUE AND CALL-BY-ADDRESS

Chapter 12

Lab - Iteration and Recursion

12.1 Goals

This lab is an exercise to familiarize you with:

o The Iterative approach to problems.

e The Recursive approach to problems.

12.2 Reference Materials

Chapter 10 of textbook.

12.3 Iteration Versus Recursion

1. Copy the file called geds. c into your own home directory. This file contains the following
C program:
/***
* Programmer:

Course: CISC105

Section :

Lab Time:

File : gcds.c

Date:

Title: Iteration versus Recursion

* K X X X X X X
¥ K K K K X X X ¥

This program shows both the iterative and the recursive methods

93

94 CHAPTER 12. LAB - ITERATION AND RECURSION

for solving the same problem. *
The problem is to compute the greatest common divisor of two data *
values. The greatest common divisor is the largest integer that *
*
*
*

* ¥ X X

will evenly divide both data values.
*

>k 3k 3k 3k 5k 5k Xk %k %k >k >k >k 3k 3k 5k 5k 5k % %k %k %k >k >k %k 3k 5k 5k 5k % % %k %k >k >k %k %k >k >k >k >k >k 3k 3k 3k 5k 5 5 > % %k %k %k %k %k > >k %k > >k %k %k % %k %k %k %k % % % %

*/
#include <stdio .h>

/*function prototypes %/
int iter_gecd (int, int);
int recur_ged (int, int);

main () {

/xdeclaration of variables x/
int numl, num2; /% two values entered by the userx/

/xinteractive session to input the two numbers for which to determine
their greatest common divisor x/

printf (” Enter two integers separated by a space: 7);
scanf ("%d %d” ,&numl,&num?2);

/xcall iterative version of gcd function to compute greatest common
divisor of numl and num2 and print out the answer returnedx/

printf (" The greatest common divisor of %d and %d, iteratively computed is

numl,num?2, iter_gcd (numl,num?2));

/xcall recursive version of gcd function compute greatest common
divisor of numl and num2 and print out the answer returned x/

printf (" The greatest common divisor of %d and %d, recursively computed is

numl,num?2, recur_gcd (numl, num?2));

}

/#function definition for iterative computation of greatest common divisor
of two integersx/
int iter_gecd (int nl, int n2) {

int i; /* loop index variable x/
int greatest = 1; /x ged as it is computedx/
int smaller; /* smaller of nl and n2 values — used for loop boundsx/

if (nl < n2)

smaller = nl;
else
smaller = n2;

for (i=2; i<=smaller; i++)
if (((n1 % i)==0)&& ((n2 % i)==0))

greatest = i;

: %d\n”,

. %d\n”,

12.3. ITERATION VERSUS RECURSION 95

return greatest ;

}

/#function definition for recursive computation of greatest common divisor
of two integersx/
int recur_gcd (int nl, int n2) {

int greatest ; /xged as it is computedx/

if (n2==0)

greatest = nl;
else

greatest = recur-gcd (n2,nl % n2);
return greatest ;

2. Compile this program, and execute it with input pairs 24 and 36, 54 and 36, 25 and 64.

3. Copy this program into a new file, and modify this new file to use a TRACE_ITER flag
to turn on tracing of the iterative approach to this problem, just as we used the DEBUG
flags to trace for debugging. Turn on this flag with a #define TRACE_ITER 1 at the top
of your file. Then, insert IF (TRACE_ITER) printf... style statements appropriately
inside the inter_gcd function to trace which values are being checked for being possible
candidates for the greatest common divisor of the two data values, and to check the current
greatest common divisor as the loop executes. Compile this version of the program and
execute it with the input value pairs above. When you are sure that it is tracing the
correct information, create a script file that cat’s this program, removes a.out, compiles this
program, and executes it with the pair 24 and 36. Print out this script for grading.

4. Now, examine the output of the traced execution of your program, and the actual code
of the iter_gcd function to understand exactly how this approach works. On a separate piece
of paper (or in a separate file), write a paragraph in English sentence form that explains the
iterative approach to computing the gcd. You should NOT just write out each statement in
the iterative gcd function in English, but rather summarize the approach in a few sentences.
You will hand this in as part of your lab assignment.

5. Look more closely at how the iterative solution is working, and rethink the goal of
computing the gcd of two numbers. This version of the iterative approach is doing more
work than necessary. Copy this program to a new file called gcds-new.c, and modify the
iterative part of this program to make it more efficient in its determination of the gcd. Hint:
The loop is supposed to find the GREATEST common divisor. The program would be
more efficient if the loop was set up to take advantage that it is looking for the GREATEST
common divisor, and once it is found, it can quit iterating.

To verify that your new version does less work at execution time, insert code into BOTH
versions to count the number of times that the loop is executed. You will need a new

96 CHAPTER 12. LAB - ITERATION AND RECURSION

counter variable, and statements to initialize it before the loop, and then increment it
inside the loop, and print the final counter value after the loop. When you are sure that
these programs work properly and that your counting is working ok, edit the program files
to TURN OFF the tracing, but leave in the counting, create a script file that cat’s your
more efficient version of the program. With the script still recording what you do, perform
the following steps: Compile your revised version that contains the more efficient iterative
version and execute it with the value pairs above. Write down the printed iteration counts
in a table (see below). Compile the old version that contains the less efficient iterative
version, but performs the counting of iterations, execute it with the same data pairs, and
write down these iteration counts in the same table. Describe why the counts are different
and why your second version is always the same or better in efficiency, but will never be
worse in efficiency. Print out this script file for grading. This table will also be included for
grading.

Your table should look like:

Data Values Original Version New Version
Iteration Count Iteration Count

24, 36

54, 36

25, 64

6. Now, starting with your original file of the program (gcds.c) that has no counting, copy
this file into a new file, and add tracing for the recursive approach to the problem. That
is, create a TRACE _RECUR symbolic constant by #define TRACE_RECUR 1 at the top of your
program file, and add if (TRACE RECUR) printf... style statements into the recur gcd
function to trace its execution. For each recursive call to recur_ged, you should print out
the current values of the two parameters and the computed value for greatest just before
returning. Fach call should result in one line of output. Nicely label each line of output
so the user can clearly see what is happening in the recursion. When you believe that you
have achieved a nice tracing capability, create a script file that cat’s this version of your
program, compiles it, and executes it with the data pair 24 and 36 only. Print out this
script file for grading.

7. On a separate piece of paper or in a separate file, write a paragraph in English sentence
form that explains the recursive approach to computing the gcd. You should NOT just
write out each statement in the recursive gcd function in English, but rather summarize the
approach in a few sentences. You will hand this in as part of your lab assignment.

12.4. WHAT TO HAND IN 97

12.4 What to Hand In

Please submit the following items IN THIS ORDER, stapled together as one package, with
your name and section clearly indicated on the front page.

1. Script file of trace of the original iterative version of gcd.

2. English explanation of iterative solution.

3. Script file for two different versions of iterative solution with counting, but no tracing.
4. Table of iteration counts from the two different iterative solutions.

5. Script file for trace of recursive version.

6. English explanation of recursive solution.

98

CHAPTER 12. LAB - ITERATION AND RECURSION

Chapter 13

Lab - Pointers and Linked Lists

13.1 Goals

This lab is an exercise to familiarize you with the following:

e Using pointers to create and manipulate dynamic data structures.

e Linked Lists.

13.2 Reference Materials

Chapter 12, pp. 450-501 of Deitel.

13.3 Creating and Manipulating a Linked List with Pointers

1. Copy the file lists.c into your own home directory. Compile and run this program,
choosing the first option to add new items to the dynamically growing list and printing out
the list by choosing the third option.

] 35k sk sk sk sk sk sk sk sk sk sk sk sk stk sk sk sk sk s s s R KRR Rk sk sk sk sk sk sk sk sk ok sk ok R R R KR R Rk Kk kR sk sk ok sk sk sk sk ok R R R K KK K K K K
* Programmer:

Title : Pointers for Linked Lists

x Course: CISC105
x Section:

* Lab Time:

* File: lists .c

* Date:

*

*

* K K X X X X X

99

100 CHAPTER 13. LAB - POINTERS AND LINKED LISTS

* *
3k >k 3k 3k 3k 3k >k >k 5k 3k 3k 3k %k 5k 5k 3k 3k %k >k 5k 3k 3k 3k %k >k 5k 3k 3k 3k >k 5k 3k 3k >k 5k 3k 3k >k 5k 3k 3k 3k %k 5k 3k 3k 3k %k > 3k 3k 3k %k 5k 3k 3k %k 5k 3k %k %k %k >k %k %k %k *k >k k k¥
*/

#include <stdio .h>
#include <stdlib .h>

/*function prototypesx/
void display_-menu ();

main () {
struct listnode { /xdeclaration of linked list elementx/

int data;
struct listnode xnextptr;

} # currentptr , % list ; /xpointer variables for using list %/
int choice; /xmenu choicex/
int item; /+data item to add to list x/

currentptr = NULL;
list = NULL;
display_menu ();
printf (” Choice? ”);
scanf ("%d”,& choice);

while (choice != 0) /xtype 0 to quitx/
{
switch (choice) {
case 1: /xinsert into front of list x/
printf (” Enter a number:”);
scanf ("%d” ,&item);

currentptr = list ;
list = malloc(sizeof (struct listnode));
list —>data = item;
list —>nextptr = currentptr ;
break;
case 2: [+ delete first elementx/
break;

case 3: /+print out the contents of the list x/
if (list == NULL)
printf (” List is empty.\n”);
else

printf (" The list is:\n”);
currentptr = list ;
while (currentptr != NULL)

printf "%d ——> ", currentptr —>data);
currentptr = currentptr —>nextptr;

}

13.3. CREATING AND MANIPULATING A LINKED LIST WITH POINTERS 101

printf (* NULL\n\n”);

}
break;
default :
printf (" Invalid choice. Try again.\n”);
break;
}
printf (” Choice? ”);
scanf ("%d”,& choice);
}
printf (" Have a good day!\n”);

}

/#*function to display menu of choicesx/
void display_-menu () {
printf (” Here are your choices:\n”);

printf (7 1: Insert an element to the front of the list .\n”);
printf (” 2: Delete the first element of the list .\n”);
printf (” 3: Display the whole list .\n”);

printf (? 0: quit.\n”);

2. Note that the code for deleting an item from the list is not currently present, so that if
you try the second option when running the program, it will not delete anything from the
list. Add the necessary code to this case of the switch statement to delete the first item
in the list when the user chooses the second option. Be sure to free up the space that was
used by the deleted item. Also, make sure that your program does NOT try to delete an
item from an empty list, but instead displays a message that tells the user that the list is
currently empty, and thus nothing is deleted. Compile and run your new version, adding
some items first, and then deleting several items to check your code.

3. Now, add "option 4” to the menu display to allow the user to request that the value of
every item in the list be doubled. That is, if the list currently looks like:

2 --> 10 --> 5 --> NULL

Then, by the user typing 4 as their choice from the menu, the list will become:

4 --> 20 --> 10 --> NULL

Option 4 should also display the new list after the doubling has occurred to show the user
that the list has been changed.

102 CHAPTER 13. LAB - POINTERS AND LINKED LISTS

13.4 What to Hand In

When you are certain that your new version of the program achieves all of the tasks above,
create a script file that cat’s this program, removes a.out, compiles this program, and
executes it. During execution, you should add several items, print out the list, delete several
items, print out the list, add some more items, print out the list, request the doubling option,
and then delete items until the list becomes empty, print out the list, and lastly try to delete
the last item. Print out this script file for grading.

Part 111

Programming Projects

103

Chapter 14

(General Guidelines for All
Programs

14.1 Program Style

Approximately 20% of the grade depends on your program’s readability. Your program
style SHOULD conform with the example programs shown in the textbook.

Style considerations include, but are not limited to:

e meaningfulness of the variable names
e indentation and white space used to improve readability of your program

e appropriate use of comments including: description of algorithm used, description of
constants and variables, description of inputs and outputs

14.2 Submission Instructions

e All computer output must be printed by a laser printer; all additional written material
must be on 8-1/2” x 11”7 size paper.

e When output consists of more than one sheet, the sheets must be submitted in correct
sequence, and stapled together.

e Fill out and staple the cover sheet to the front of the program. This cover sheet is
online in the file Progs/coversheet.

e Programs may be submitted up to 5 days after the due date.

105

106 CHAPTER 14. GENERAL GUIDELINES FOR ALL PROGRAMS

¢ REMEMBER! Programs will not be accepted beyond the Latest Submission Date
without approval of the Professor. Such approval will be granted only under special
circumstances such as documented illness.

14.3 Summary of C Coding Style Guidelines

e BEGIN EVERY PROGRAM WITH A BLOCK OF COMMENTS.

e PLACE COMMENTS WITHIN CODE EITHER IN THE SAME COLUMN AND
ABOVE THE CODE IT EXPLAINS, OR TO THE RIGHT OF THE CODE.

e A COMMENT IS OF NEGATIVE VALUE IF IT IS INCORRECT.

e CHOOSE MEANINGFUL VARIABLE AND FUNCTION NAMES; DO NOT OVER-
ABBREVIATE.

e EACH INDENTATION SHOULD BE 3 SPACES; NOT 2, NOT 5, ALWAYS 3.

e ALIGN CORRESPONDING { }'S; INDENT CODE WITHIN BOUNDING { } 3
SPACES.

o If STATEMENTS: ALWAYS INDENT THE then PART UNDER THE if PART.

o If-then-else STATEMENTS: ALIGN THE KEYWORDS if AND else, AND ALIGN
THE then AND else CODE.

e Switch STATEMENT: INDENT EACH CASE’S CODE.
e For AND while STATEMENTS: ALWAYS INDENT THE BODY OF THE LOOP.
e KEEP CODE READABLE: READABLE DOES NOT MEAN EXECUTES FASTEST.

14.4 A Note on These Projects

The following chapters are ezample program projects. Some of these might be replaced by
your instructor. You are encouraged to work through as many of these projects as possible,
even if they are not explicitly assigned.

14.5. GETTING HELP 107

14.5 Getting Help

IF you are having some problem with your attempts at a program for CISC 105 Lab or
Project, it is a good idea to either email a copy (with explanation) to the TA and/or have
a session at his/her terminal so he/she can see what’s actually in your program. This will
work much better than merely telling us about your bug. There are so many ways a program
can go wrong, it helps if the TA can SEE (and maybe run) your program so he/she can
advise you, help you find/correct bugs, etc.

108 CHAPTER 14. GENERAL GUIDELINES FOR ALL PROGRAMS

14.6 Project Coversheet

When turning in a programming project, always include a coversheet - available online, and
illustrated below. Always fill in this sheet and staple to the front of your project.

CIS 105 Programming Assignment

Assignment: Project #
Course:

Course Section #:
Programmer:

Login name:

CORRECTNESS | Possible | Grade
———————————————————————————————————— R
C: Correct operation [30% | [
———————————————————————————————— e et R e
T: Testing & Error Handling | 15% | |
———————————————————————————————— o |

CLARITY

———————————————————————————————————— o4
D: Documentation | 15% | [
———————————————————————————————— S
C Code structure | 10% | |
———————————————————————————————— e %
N: Naming | 10% | |
———————————————————————————————— o4
F: Formatting | 10% | |
———————————————————————————————— —————————— %
SUBTOTAL | 90% I I
———————————————————————————————— e
A: A Grade | 10% I I
———————————————————————————————— S
TOTAL | 100% I I
Fom o +

Chapter 15

Project 1 - The Company Payroll

15.1 Objectives

The goal of this project is for you to learn to develop a complete C program from scratch.

e Develop an algorithm and plan a program based on the algorithm
e Write a C program based the algorithm
e Identify and correct syntax errors

e Test a program to see if it contains logic errors.

Required Background: Before you begin this project, be sure you have read chapters 1-4
of Deitel.

15.2 Assignment

The Titanium Manufacturing Firm has just hired you to write the software for their
payroll system. They want the program to perform the following actions:

1. Print an informative, but short, message to the payroll clerk as they begin to execute
the program.

!This programming project is based on problem 4.28 in Deitel.

109

110

CHAPTER 15. PROJECT 1 - THE COMPANY PAYROLL

. Ask the clerk if they are ready for their first employee, and wait for the clerk to type

1 for yes or 0 for no. If they type 0, end the execution; otherwise, begin to input data
about the first employee’s pay check (described below). After the first employee has
been processed, then ask the clerk whether they want to process another employee.
If they type 0, end the execution. If they type 1, repeat the processing for this new
employee. The processing of employees should continue to repeat until the clerk types
0 in response to being asked whether they want to process a new employee. Therefore,
the program should handle any number of employees, maybe 3 on one execution, and
100 on another execution.

. For each employee, interactively obtain the following information from the clerk, by

a nice, user-friendly interactive session:

(a) the id number of this employee
(

b) the status - H for hourly, S for salaried staff, C for contractor

)
)
(c) If the status is H, the hours worked and the hourly payrate
(d) If the status is S, the annual salary

)

(e) If the status is C, the amount to be paid

After this information is all input by the clerk in response to your program prompting
them for it, then compute the employee’s paycheck. The display the check information
on the screen.

. The amount of the check is computed as follows - based on the value of status.

(a) H - compute hours times rate (with time and one half for overtime hours (hours
over 40))

(b) S - Take annual salary divided by 52

(c) C - the check amount is the amount of the contract

For example, an employee with 'H’ status with 50 hours of work, and a rate of 12
dollars per hour would earn 660 dollars.

Print out a “check” to the screen. so that it looks like a check.

. After all employees have been processed, print a friendly message to end the day for

the clerk.

When you are ready to type in your program, enter it into the file payroll.c and start
editing with this file.

15.3. WHAT TO HAND IN 111

15.3 What To Hand In

Note: Remember to follow the programming guidelines listed in the beginning of the Pro-
gram Projects section of this manual.

Run your program several times and satisfy yourself that it produces correct answers. Be
sure to try typical values for the answers to the program’s questions, as well as legal, but,
what we call boundary values, such as 0 and 1 for some of the answers. For example, try 0
for number of hours worked, and make sure you print an appropriate message instead of a
check.

When you are sure your program works, make a script file by doing the following:

script payroll.scr
cat payroll.c

cc payroll.c

a.out

exit

Show executions with the following input cases:
(1) only one employee

(2) no employees

(3) 2 employees of each status type

Hand in a copy of your script file printed on a laser printer.

15.4 To Earn an “A” Grade

The “A” task is to add the following features.

1. Extend it so you handle erroneous input nicely. That is, whenever the clerk inputs an
invalid number for any of the questions, your program should tell the user that the
input is wrong and repetitively prompt for a legal value until they input a legal value.
Hint: This will involve adding a WHILE loop around the code that interactively
inputs a value.

2. Extend the program to display a total number of employees processed and the total

amount of checks for the day for each status type after the last check is printed.

You can assume that the clerk inputs the correct type for each question, that is, integers,
not letters or decimal numbers. You should check to be sure that the input is not negative

112 CHAPTER 15. PROJECT 1 - THE COMPANY PAYROLL

number for the id number, hours worked, or any other numeric input, and that the status

is a valid letter.

You should also make sure that the clerk inputs either 0 or 1 in response to whether they
want to process another employee.

Chapter 16

Project 2 - ATM Machine Software

16.1 Goals

To write a simulation of an ATM machine, and practice th following programming tech-

niques.*

e Develop an algorithm and plan a program based on the algorithm

e Implement a C program based the algorithm

Identify and correct syntax errors

Test a program to see if it contains logic errors.

Use the following features of C programming:

— Character and integer input/output.
— Nested control structures.

— Definitions of simple functions.

— Use of global variable.

— Checking for bad input, and reporting errors.

16.2 References

You should have completed the first 7 labs, and have read chapters 1 - 5 of Deitel before
beginning this program.

!This programming project was inspired by Mike Matsumoto - former CIS student who passed away in
2000.

113

114 CHAPTER 16. PROJECT 2 - ATM MACHINE SOFTWARE

16.3 Assignment: ATM Software

16.3.1 Overview

We will write a simulation for a simple ATM machine - one that has a single account, and
only one user. Also, the account will always start with a zero balance. Even with this
very simple version, the program will have many of the functions of a real ATM program
- remember that these machines actually are controlled by software (and that the software
is probably written in C).

16.3.2 Program Specifications

Your program will start up by displaying the following menu:

EEEREEEREREERREREEEREREEEEE R

$ $
$ WELCOME TO MUCHO DINERO BANK $
$ $

EEEREEEERRERREREEEREREE R

Enter 1 To Open an Account
Enter 2 To Close an Account
Enter 3 To Deposit Money

Enter 4 To Withdraw Money
Enter 5 To Get Current Balance
Enter 6 To Set PIN

Enter 7 To Quit

Enter 8 To Redraw Menu

Use a loop to prompt for and scan in a selection. After a selection has been made, a switch
statement will be used to match the input with the correct function. The details of each
function are described below.

Your program should define the following global variables:

float balance; /* balance of the account */

int pin; /* pin number of the account */

int account_active; /* set to 1 if there is an active account, 0
otherwise */

16.3. ASSIGNMENT: ATM SOFTWARE 115
16.3.3 Required Functions

Your program should include the following functions:

1. void display menu(void) ;

Prints a menu of items for the user to choose from.

2. void hey(void);

Prints "Have a nice day too!” message. (Especially important in New York).
y g

3. void open_account(void) ;

There can be only one account while the program is running. If there is not already
an account opened, this function opens an account and sets the balance to 0.0 and
the PIN number to default of 999. If there already is an opened account, the function
prints an error message.

4. void close_account(void);
Closes the account if an open account exists (if the PIN is entered correctly). Other-
wise, prints an error message.

5. void deposit(void);

If there is an open account, this function deposits money in the account (balance is
incremented by the entered amount). If the amount entered is zero or less, an error
message is printed. No need to check the PIN to deposit money.

6. void withdraw(void);

Withdraws money from the account if there is an open account and the correct PIN
is entered; prints error if not. If the amount entered is zero or less OR if there is
insufficient funds, an error message is printed.

7. void get_balance(void);
Prints the current balance if the account is active and the correct PIN is entered,
prints error if not.

8. void set_pin(void);

Changes the current PIN number if the account is active and the correct old PIN is
entered. It asks for the new PIN twice for confirmation. An error message is printed
if PINs do not match.

9. int get_pin(void);

Prompts for PIN and returns 1 of the correct PIN is entered, 0 otherwise. This is
a utility function for the other functions to use. It should NOT be called from the
main() function.

116 CHAPTER 16. PROJECT 2 - ATM MACHINE SOFTWARE
16.3.4 Error Handling:

If, at any time, the user enters an inappropriate value (wrong PIN, invalid selection, etc.), an
error message will be printed. A sample implementation will be provided in your account.
You should check this executable program for the details of your error messages.

16.4 Helpful Hints

A skeleton program is available as atm_skeleton.c in the Progs directory. You should
provide the missing parts in the skeleton. If you compile the skeleton program, you will see
that the options 1, 5, 7 and 8 are already functioning.

Remember to save your programs regularly (every 30 minutes or so).

After fixing all compiler errors, you will want to run your program in such a way as to
exercise ALL of your code. Try various error situations, to be sure that your program
handles theses correctly.

16.5 What To Submit

Run your program several times and satisfy yourself that it produces correct answers in all
cases! When you are sure that you program works, make a script file for grading:

script atm.scr

cat <yourfilename>.c
cc <yourfilename>.c
a.out

various optiomns....
exit

Hand in a copy of your script file.

16.6 What to do for an “A”

Change the menu options so that the user enters a letter instead of a number to choose
a selection. (Eg. "W’ for a withdrawal, 'D’ for a deposit, etc.) Then use the getchar ()
function from stdio.h to scan in the user’s selection.

Add two functions as follows.

16.6. WHAT TO DO FOR AN “A” 117

1. char Get_Command()

Prompt and read in the user command - and return it.

2. int Verify_Command(char Cmd)

Determine whether (1) or not (0) Cmd is a valid command.

Change the loop in main to take advantage of these new functions.

Make a script file as in the regular part, and hand in just this scrit file.

118 CHAPTER 16. PROJECT 2 - ATM MACHINE SOFTWARE

Chapter 17

Project 2 - The Hangman Game

17.1 Objectives

e To learn to use simple character i/o
e To design software that uses strings
e To use global variables
e To design to specifications
Background Reading: Make sure you have read the following chapters in Deitel: Chpater

4 (control structures), Chapter 5 (functions), and Chapter 8 (strings); and completed the
chapters 1-7 in the lab manual before beginning this project.

17.2 Overview

You have been hired by the ABC Gaming Company to design game software. As a test of
your design and programming skills, they have given you a simple first assignment — to
design and program part of the Hangman game. Recall that Hangman is a simple word-
guessing game, where the player guesses words one letter at a time. To keep things simple,
we’ll just use 4-letter words, and the little hangman figure has only four states — see the
sample run.

17.3 Specifications

The hangman program will display the following on start-up:

119

120 CHAPTER 17.

USED LETTERS:

YOUR WORD:

GUESS A LETTER:

After guessing a correct letter (say u for luck):

GOOD GUESS!
USED LETTERS: u

YOUR WORD: _u__

GUESS A LETTER:

After guessing an incorrect letter (say i):

i WAS AN INCORRECT GUESS
USED LETTERS: ui

PROJECT 2 - THE HANGMAN GAME

17.4. GETTING STARTED 121

YOUR WORD: _u

GUESS A LETTER:

The game will end after either correctly guessing the word, or after four wrong guesses.

17.4 Getting Started

A skeleton program is available in Progs/hang skel.c, and a running program is in file
Progs/hangman. Also, the dictionary is in file Progs/Words. You should copy or download
these files to your Unix account. Make sure that the file hangman is executable by entering
the command chmod +x hangman — you can then run the program to see a sample run.

Your program will use the following global variables:

char dictionary[MAX_WORDS] [MAX_LENGTH+1]; /* 1000 word dictionary */
char used_letters[26]; /* array for used letter */

/* the length of dictionary (don’t touch this variable!!!) */
int total_words;

Your program will use the following functions:

1. int load_dictionary(char *filename, int no_words)
This function loads the dictionary array from the Words file. This function is provided
for you.

2. char *get_random_word()

This function gets a random number to be used to select a new guess every time the
game is played. The function returns the word to be used next. This function is
provided for you.

122 CHAPTER 17. PROJECT 2 - THE HANGMAN GAME

17.5 What To Hand In

Please make sure that the base and the hanging man displays are EXACTLY as they appear
in the sample program. There will be points deducted for cosmetic mistakes. You should
be able to display outputs matching EXACTLY to the specification.

Hand in a script file with a listing of your program, and a run illustrating all of the possible
options.

17.6 Skeleton Starter Program

/* File: hang_skel.c x/
#include <stdio.h>

/* constants: */
#define MAX_WORDS 1000
#define MAX_GUESSES 4
#define MAX_LENGTH 4

/* prototypes: */

void display_base(int);

int load_dictionary(char *, int);
char *get_random_word() ;

/* globals: x/

char dictionary[MAX_WORDS] [MAX_LENGTH + 1]1;
char used_letters[26];

int total_words;

int main() {
char *filename = "Words";
char input;
int wins, losses;
int done = 0;
int i;

char word[MAX_LENGTH+1], guess[MAX_LENGTH+1];

int word_length;
int wrong_guesses;
int right_guesses;
int total_guesses;
int letters;

/* set the randon number generator */
srandom(time(0));

/* load the dictionary file x/

17.6. SKELETON STARTER PROGRAM 123

total_words = load_dictionary(filename, MAX_WORDS) ;

if (total_words !'= -1)

printf ("Loaded %d words from %s\n", total_words,
filename) ;

else {

printf ("Error loading %s\n", filename);

return;

}

/* while loop for multiple games */
while(done == 0) {
total_guesses =

wrong_guesses
right_guesses =

0;
0;
0;
used_letters[0] =

7\0:;
strcpy(word, get_random_word());

printf ("WORD: %s (given away to test not to cheat)\n",
word) ;

/* make sure to take this line out of here afterwards */
printf ("\n\n *x* Type Control C to get out **x \n");

word_length = strlen(word);

/* initialize guess to: ____ */

for(i = 0; i < word_length; i++) {
guess[i] = ’_’;

}

guess[i] = °\0’;

/* put 9 \n’s to clear the screen */

/* while loop for a single game */

while(wrong_guesses < MAX_GUESSES &&

right_guesses < word_length) {
/* based on the previous status, print:

USED LETTERS:

124 CHAPTER 17. PROJECT 2 - THE HANGMAN GAME

or with the hanging man.
and then print:

GUESS A LETTER:
*/
/* put 9 \n’s to clear the screen */

/* based on input, print:

c IS AN INVALID CHARACTER
or

YOU HAVE ALREADY USED c
or

GOOD GUESS!
or

c WAS AN INCORRECT GUESS

*/

} /* end while for a single game */

/* based on the result of the game, print:
YOUR WORD: luck
YOU LOSE
or
YOUR WORD: luck
YOU WIN!
and then
SO0 FAR, WINS: x LOSSES: y
PLAY AGAIN (y/m)?
*/

} /* end while loop for multiple games */
} /* end main */

void display_base(int status) {
/* display the hangman based on the number
of wrong guesses made so far; */

17.7 What to do for an “A”

For an “A” do each of the following.

17.7. WHAT TO DO FOR AN “A” 125
1. Change the number of states for the hangman - from 4 to 6 by drawing legs and arms
one at a time.

2. Change the maximum word length to 6, and adjust all your code - so that it correctly
deals with a variable length for word length.

3. Then edit the words file and add some words of mength 5 and 6.

126 CHAPTER 17. PROJECT 2 - THE HANGMAN GAME

Chapter 18

Project 3 - The Data Processing
Assistant

18.1 Objectives

e To write functions which have one-dimensional arrays as arguments
e To implement an algorithm which works with array data
e To write functions which interface with existing code

Required Background: Before you begin this project be sure you have read chapters 6 nd
7 of Deitel, and that you have completed the lab on one-dimensional arrays.

18.2 Part I (60 points) - Sorting and Merging

For this part of the program, you must write two general functions: one that sorts an array
into ascending order, and one that merges two arrays (assumed to already be sorted) into
one sorted array using a merge algorithm to be discussed in class.

A template containing a main program is given to you in: merge-template.c. Your task
is to code the missing functions called SortArray and Merge. (No changes are permitted to
the main function other than added appropriate header comments.)

In this template, the main program inputs two sets of numbers. (For sake of example, let’s
assume the numbers represent weights of certain animals at the Philadelphia Zoo.) For
each set of animal weights, the main program (1) inputs the number of weights in the set,
(2) inputs the weights, and (3) calls your sort function to sort the set of weights.

The main program then calls your merge function to merge together the two sets of weights.

127

128 CHAPTER 18. PROJECT 3 - THE DATA PROCESSING ASSISTANT
Example input:

6

6 89315 11

8

6 22 9 10 4 15 22 12

The final output will indicate the sorted and merged array values:
3466899 10 11 12 15 15 22 22

Notice that there may be duplicate values within each array and between arrays. All of
these duplicate values should appear in the merged array.

Test this program before going on to Part II.

18.3 Part II (30 points) - Input/Output Functions

For this part of the program, you will add two new functions as follows; and, you are allowed
to make small modifications to the main function - so that it uses these new functions.

1. void printArray(char* message, int x[], int n); - a function whose job is to
print the message on one line, then the array x of n values on the next line...then print
a blank line at the end.

2. int inputArray(char* promptMessage, int x[], int MaxSize, int* nValues);
- a function whose job is to print the prompt message, and then read in the number
of data, and then use a loop to read in the array elements. Use the return value of
the function to return 1 if the function worked without errors, 2 if the number of
data exceeds the size of the array, or is less than land return a 3 if the user enters
insufficient numbers.

The main function uses inputArray, sending it an appropriate prompt message, the
array name, the declared array size, and a variable to hold the count (dont’t forget

the &).

Once you have written thses functions, make a new copy of your program and enter your
functions at the end. Add function prototypes, and then replace the original code for input -
with calls to your inputArray function. Then add calls to function printArray as follows:

printArray("first array - unsorted", ...);

18.4. WHAT TO HAND IN 129

printArray("fisrt array - sorted", ...);

. do the same for the second array ...

. then output the merged array using printArray

Once the program is debugged, test it with the test data files. Then make a script file as
shown below.

18.4 What To Hand In

Run your program 5 times with 5 test data sets that will be made available a few days prior
to the due date. You should be POSITIVE that your program operates correctly BEFORE
running it with this test data. Make up your own test data to help debug and verify your
program.

Even if your program gets correct results for my test data, if your program contains logic
errors that would be uncovered by other test data, you can lose significant credit. Do NOT
wait until a few days prior to the due date to begin writing or testing your program!!

Your actual script execution will look like:

script scriptfilename

rm a.out

cat your_merge_program.c
cc your_merge_program.c

cat Merge_Program.test.datal
a.out < Merge_Program.test.datal

cat Merge_Program.test.data2
a.out < Merge_Program.test.data2

cat Merge_Program.test.data3
a.out < Merge_Program.test.data3

cat Merge_Program.test.data4
a.out < Merge_Program.test.data4

130 CHAPTER 18. PROJECT 3 - THE DATA PROCESSING ASSISTANT

cat Merge_Program.test.datab
a.out < Merge_Program.test.datab

exit

Make another script file for your modified program from section 3 - using the same runs
and the same inout data.

18.5 Notes

1. Your functions Sort Array and Merge should be GENERAL, that is, written to sort any
array of integers, and to merge any 2 arrays of integers, respectively. They should not
be specific to sorting or merging animal weights, hence the variable names used in your
functions should be general, not for example, ‘AnimalWeights1[]’, ‘AnimalWeights2[]’

2. You may NOT change the main program to merge the two unsorted arrays into one
large unsorted array, and then sort the merged array.

3. Even when you add your calls to inputArray and printArray, do NOT alter the calls
to sort and merge.

18.6 To Earn an “A” Grade

Change your merge function such that it removes duplicates; that is, the merged array
returned should contain NO duplicate values.

Make up your own test data case to CLEARLY demonstrate that your new program works.

Chapter 19

A Tic Tac Toe Program

19.1 Objectives

e Develop an algorithm and plan a program based on the algorithm

Implement a C program based the algorithm

Identify and correct syntax errors

Test a program to see if it contains logic errors

Write an interactive game program

Use the following features of C programming:

— Function definitions and calls
— Passing Parameters and returning values from functions

— Using 2 dimensional arrays

Reguired Background: Before you begin this project be sure you have read the chapters in
Deitel on arrays and functions, and that you have completed both labs on arrays.

19.2 Assignment: A Tic Tac Toe Program

19.2.1 Overview:

You have all probably played a computer game at sometime in your life. Now, you have
the opportunity to create your own program that allows the user to play tic tac toe against
the computer, (ie., your computer program!).

131

132 CHAPTER 19. A TIC TAC TOE PROGRAM

For those not familiar with tic tac toe, or those who forget how to play, it is a board game,
with a 3 by 3 board that looks like:

19.2. ASSIGNMENT: A TIC TAC TOE PROGRAM 133

The game has two players, one designated the X player, and one designated the 0 player.
Each player takes turns placing their mark, X or 0, on the board in a square that has not
been marked yet. The objective of the game is to be the first player to have 3 marks in a
row, column, or diagonal.

Your program will be written so that the person who runs your program is the X player,
and they take turns with the computer, which is the 0 player. Your program will allow the
user to play one game, and will quit when either the user or computer wins, or all of the
spaces of the board have been filled, and noone has won (a tie!).

19.2.2 Functionality of Your Program:
Start by copying the file tictactoe.c to your own directory, and starting to work in this
file. In particular, your program should accomplish the following tasks:

1. On the screen, display a welcome message and a short (a few lines) explanation of the
rules of tic tac toe, and instructions for the user in giving their input.

2. Declare a 2 dimensional array of single characters to store the current values stored in
each location of the tic tac toe board. A value will be either "X’, O’ or ’ .

3. Define and call a function that takes the array as a parameter and clears the board, by
initializing each location to contain a blank character ’ .

4. Define a function that draws the board with its current values. For example, a board in
which board|[0][0] is "X’, board[0][1] is 'O’, board[0][2] is ’O’, board[1][0] is * ’, board[1][1] is
"X, board([1][2] is ’O’, board[2][0] is * ’, board[2][1] is * ’, board|[2][2] is "X’, could be displayed
as:

134 CHAPTER 19. A TIC TAC TOE PROGRAM

5. Display the current board to the user, and prompt them to input their desired position
for a mark, by inputting a row and column value. Continue to prompt them for a row and
column until the coordinates are within the bounds of the board (i.e., within the limits of
the array). When they have given a legal position, put their mark, ’X’ in that position of
the array representing the board. You do NOT have to check to see whether their mark
is on top of an "X’ or ’O’; you can assume that the user will always pick a square that is
unoccupied. This extra check is part of the extra credit.

6. Define a function that takes the board as a parameter and checks to see whether there is
a winner, given the current board values, and returns the value 1 if the current board has a
winner, else returns 0 (there is no winner yet). Your program should call this function after
the user inputs their desired position, and after the computer puts a mark on the board.
The example above shows a situation in which the user has won with a diagonal of ’X’s.

7. If the user has not yet won, your program should call the function PutComputerMark()
which is already written for you and part of the starter file tictactoe.c. After the computer
marks the board, you should again check whether the computer has won. Your program
should continue to let the user and computer take turns marking the board until either one
of them wins, or the board is filled with X’s and O’s.

8. When there is a winner, your program should print the appropriate message to the user
indicating the winner, and exit with a ”Game Over” message.

19.3 Required Functions

Your program should at least contain the following functions as separate functions and
appropriate calls. You are free to have additional functions defined and used if appropriate.

e ExplainRules, a function that explains tic tac toe and gives the instructions to the
user on how to play.

e DrawBoard, a function that draws the current board.
e ClearBoard, a function that clears the board contents, ie., sets each value to ’ ’.

e PutPlayerMark, a function that prompts the user for their position, continues to
prompt until legal coordinates, and then places the value in the position.

e CheckForWinner, a function that checks the current board for a winner and returns
either 1 or 0.

19.4. WHAT TO HAND IN 135

19.4 What To Hand In

Create a script file that cat’s your program file, removes a.out, compiles your program,
and then runs it 3 times, each time with different inputs from the user, trying to beat the
computer. Show an instance where the user wins, one where the computer wins, and one
where there is a tie (i.e., the board get filled without a winner).

19.5 To Earn an “A” Grade

1. Add code to the function PutPlayerMark to check that the user has not chosen a position
that contains an X’ or ’O’, and if so, continues to prompt them for a new position. Create
a script file that cat’s this version of your program, compiles it, and runs it showing several
attempts to put an X in positions that already have a mark.

2. Add code to the part of the code in the PutComputerMark function that tries an offensive
move when a defensive move is not needed, and when a win is not inevitable. Before this
code add code that takes a better attack at winning, in particular, replace it with code that
will attempt to find a ’O’ in a row, column, or diagonal with no 'X’ in that row, column, or
diagonal, and then place the 'O’ in one of the other empty positions in that row, column,
or diagonal. When this check shows that this situation does not arise currently, place the
O’ in the manner it is placed now in the code.

136 CHAPTER 19. A TIC TAC TOE PROGRAM

Part 1V

Appendices

137

Appendix A

Using Your Home Computer for
CISC 105

A.1 A Brief Introduction To Telnet And Ftp

All the assignments and labs for CISC105 must be done on strauss. If you want to work from
your home PC (WITH CONNECTION to the Internet) you will need to use the following
two tools (if your computer is a MAC, then the MAC clicks to do the following will be a
bit different):

1. Telnet

You need to open the Run window and type the following in it:
telnet strauss.udel.edu

This will open up another window for you and you will be prompted for your strauss
user name and password. Once you have entered them you will see the usual unix
prompt in the window. You are now ready to work on your assignments. To exit the
telnet window, type the word exit at the unix prompt.

2. FTP (File Transfer Protocol)

This is a tool you would use to transfer files between two machines. FOR EXAMPLE,
suppose all your code etc. is on strauss, and, lets say, you want to print your script
file (for submission) out on your printer at home you would first have to transfer the
.scr file from strauss to your home PC. To do this you should do the following :

(a) Open an MS-DOS window either by typing cmd” or ”command” in the Run
window or by clicking on the DOS Prompt icon. When the window opens up,
note which directory you are in! Change it IF you want to be in a different
directory.

(b) type

139

140 APPENDIX A. USING YOUR HOME COMPUTER FOR CISC 105

ftp strauss.udel.edu

at the DOS prompt. You will then be prompted for your strauss user name and
password. You can then use the ”get” command to transfer your file from strauss
to your PC. You would type

get lab2.scr

(c) The file lab2.scr will be transferred to your machine. Then you may exit the ftp
session by typing the word ”"bye” at the ftp prompt.

A typical ftp session would be as follows :

ori~/ 31> ftp strauss.udel.edu

Connected to strauss.udel.edu.

220 strauss.udel.edu FTP server (Version wu-2.4.2-academ[BETA-18-VR13](1) Wed Feb 10 10::
Name (strauss.udel.edu:redeyvai): vaibhavi

331 Password required for vaibhavi.

Password:

230 User vaibhavi logged in.

ftp> 1s *.scr

200 PORT command successful.

150 Opening ASCII mode data connection for file list.
file_to_get.scr

226 Transfer complete.

remote: *.scr

15 bytes received in 0.0034 seconds (4.35 Kbytes/s)
ftp> get file_to_get.scr

200 PORT command successful.

150 Opening ASCII mode data connection for file_to_get.scr (83 bytes).
226 Transfer complete.

local: file_to_get.scr remote: file_to_get.scr

87 bytes received in 0.023 seconds (3.69 Kbytes/s)
ftp> put file_to_put.scr

200 PORT command successful.

150 Opening ASCII mode data connection for file_to_put.scr.
226 Transfer complete.

local: file_to_put.scr remote: file_to_put.scr

78 bytes sent in 0.00037 seconds (205.32 Kbytes/s)
ftp> 1s *.scr

200 PORT command successful.

150 Opening ASCII mode data connection for file list.
file_to_get.scr

file_to_put.scr

226 Transfer complete.

remote: *.scr

30 bytes received in 0.0028 seconds (10.50 Kbytes/s)
ftp> bye

A.2. ANOTHER EXAMPLE OF USING YOUR HOME COMPUTER IN CISC 105 141

221-You have transferred 161 bytes in 2 files.

221-Total traffic for this session was 1063 bytes in 4 transfers.
221-Thank you for using the FTP service on strauss.udel.edu.

221 Goodbye.

ori~/ 32>

A command such as ls, when issued at the ftp prompt will list the contents of the
directory you are currently in on strauss. The ”get” command copies a file from
strauss to your PC, "put” will put a file from your PC onto strauss. IF you want to
be in a different directory on strauss, change directory appropriately.

Finally, to print the file you have just transferred onto your PC, you must open it in
an editor like notepad and must issue a print command from there, by clicking on the
File menu and then selecting the Print command from there.

If you have difficulties because you are missing ftp software, have a MAC, etc. you
may ask for help at the help desk at any of the sites.

A.2 Another Example of Using Your Home Computer in
CISC 105

You were told to retrieve files using Netscape for Labs, etc. at the URL http://www.udel.edu/CIS/105/
— for example, lab2.c is at URL http://www.udel.edu/CIS/105/Labs/lab2.c

This is great; HOWEVER, IF you do this on your PC at home (instead of on a UD X-
terminal logged into strauss), THEN the copy of lab2.c will be on your home PC’s hard disk
(secondary storage), WHEN YOU NEED IT TO BE ON YOUR STRAUSS ACCOUNT’S
SECONDARY STORAGE. SO, here’s A way to handle this (on a home PC — you don’t
need to do this at at UD X-terminal logged into strauss although it’s ok there too):

Logged into strauss from home or from UD (see above re how to log onto strauss from
home), in YOUR directory where YOU want to store a copy of, say, lab2.c, execute at the
Unix prompt:

cp /www/htdocs/CIS/105/Labs/lab2.c .

The . just above in the Unix command IS PART of the command. It refers to YOUR
current directory.

Note: /www/htdocs/CIS/105/Labs/ is the UNIX directory corresponding to the URL
http://www.udel.edu/CIS/105/Labs/ — etc.

142 APPENDIX A. USING YOUR HOME COMPUTER FOR CISC 105

Appendix B

Useful Unix Commands

The following tables include brief descriptions of some of the Unix commands you will use
most often in doing your work for this course. You should become familiar with these
commands as quickly as possible - certainly by the end of your third lab.

143

144

APPENDIX B. USEFUL UNIX COMMANDS

File-related commands

cat filename

display the contents of the file called filename
on the screen

cp filename newfilename

cp filename dir_name

copy the file called filename to a new file
newfilename, keeping a replica in the

file filename, wipes out old contents of
newfilename

copy a file filename into directory
dir_name

more filename

display the contents of the file called filename

on the screen, pausing when the screen is full,
waiting for the user to type RETURN or ENTER to
continue displaying

mv filename newfilename

mv filename dir_name

mv *.c dir_name

move the file called filename to a new file
called newfilename; wipes out old contents of
newfilename, and deletes filename file

move the file called filename into the directory
called dir_name

move all C files into directory dir_name

qpr -q printer filename

print the file called filename on
the printer called printer
Eg. qpr -q whlps lab3a.c

rm filename

remove (delete) the file called filename from
the computer system; these files are really truly gone!

Directory Commands:

cd dir_name

change (or move) to the directory called dir_name

cd .. change (or move) back up one level in the tree

cd change (or move) back to your home directory, from
wherever you are currently located

Is display the names of all files in the current directory

Is dir_name

Is *.c

Is -1

display names of all files in directory dir_name
display all files ending in .c in the current directory

uses long format for output from the 1s command

mkdir dir_name

creates a new directory called dir_name,
which is located in the current directory

pwd

displays the complete name of your current directory
includes the whole pathname, that is, every directory
on the path starting at the root directory of the Unix
system down the tree branches to your current directory

rmdir dir_name

remove an entire directory from the computer system;
the directory must contain no files (be empty) for this
command to actually do any deletion of the directory

145

Misc. Commands

cc progname.c
cc progname.c -lm

CC -0 prog progname.c

compile the C program stored in file progname.c

compile the C program stored in file progname.c
where one or more functions from math.h are used.
compile the C program stored in file

progname.c and put the executable in file called prog

chdgrp

chdgrp number

display all projects which you are a member of

make project number your default project -
takes effect the next time you logon.

command | more

cc progname.c | more

the output from command is displayed through
more one screen at a time

Use this to see your error messages one
screen at a time!

du

display disk usage statistics

lint progname.c

check program.c for consistency - finds errors

such as missing return statements, uninitialized variables, etc.

man command

man Is

man man

to display online documentation for command
for example, get online help for the 1s command

get more information on the man command

newgrp number

temporarily change to project number

password change your login password - takes effect
the next day
quota display your current disk quota

script filename.scr

make a record of a session for printing. Note that the
file name should end in .scr. (DO NOT use a

file name like lab2a.c - as script will then

completely erase your source file!

146 APPENDIX B. USEFUL UNIX COMMANDS

Appendix C

The Unix tcsh Shell

Here, we will discuss some nice advantages of the Unix shell, called the tcsh shell. These
advantages include a feature called filename completion, and an advanced command history
mechanism. We then show you how to make tcsh your default shell.

C.1 File Name Completion

The tcsh shell enables you to have file name completion. We illustrate with an example. I
just made up a file in my eecis Unix account called ‘aardvarksforfunandforprofit’. Without
tesh, if T want to type some command involving this file, it is painful to have to type out
its long name without errors. With tcsh it is a breeze. All I have to do is type out the first
few letters, hit the Tab key, and the system types out the rest for me! How many letters?
you might ask. I have several files in my home directory beginning with ‘aa’:

case@polaris:” 864 > 1ls aax

aaai.98 aaai.s96

aaai.fall96 aaf.sessions
aaai.icml.workshop.98 aardvarksforfunandforprofit
aaai.online.search.97 aaron

I have two beginning with ‘aar’, but only one beginning with ‘aard’. Hence, if I type at the
Unix prompt:

case@polaris:” 865 > cat aard
AND, THEN, HIT THE Tab key, the SYSTEM responds with:

case@polaris:”™ 865 > cat aardvarksforfunandforprofit

147

148 APPENDIX C. THE UNIX TCSH SHELL

It completes the awful spelling for me! If I, then, hit a return, I get:

This file’s contents is slightly longer than its name.
case@polaris:” 866 >

The general rule for tcsh file name completion is: after enough initial letters of a file name
are typed (at the Unix command line) to distinguish this file from others (in the directory
you are in), hitting a Tab will cause the whole file name to be automatically completed. It
works too on DIRECTORY names!

C.2 Command History

The tcsh shell lets you do other things, one of which I'll mention now. With tcsh, if you
want to reissue a command you typed several lines back, you don’t have to retype it, just
hit Control p (hold the Control key while hitting a p) to go back in your command line
history — each hit sends you back one command. (Note: the up arrow key can be used
instead of the Control p sequence.) For example, if I do:

case@polaris:” 866 > 1ls aar*
aardvarksforfunandforprofit aaron
case@polaris:” 867 >

And THEN hit a Control p, I get:
case@polaris:” 867 > ls aar*
A second control p (before a return) yields:
case@polaris:”™ 867 > cat aardvarksforfunandforprofit

which corresponds to TWO commands back in my command history. Etc.

C.3 Activating tcsh

Ok, so how do you activate the tcsh feature?

To activate it for ONE session (before logging out) only, at your strauss Unix prompt do:

C.3. ACTIVATING TCSH 149

case@strauss:~ 99 > exec /usr/local/bin/tcsh
case@strauss:” 1 >

To have it ALSO be active each subsequent time you log in do:

case@strauss:” 1 > /opt/bin/chsh
Password:

New shell:/usr/local/bin/tcsh

The changes will be made within 24 hours.
case@strauss:”™ 2 >

where the SYSTEM prompts for your password and the new shell you want. tcsh, techni-
cally, is a shell.

For more information about the tcsh shell, type man tcsh.

150 APPENDIX C. THE UNIX TCSH SHELL

Appendix D

Tailoring Your Unix Prompt

To get a Unix prompt which shows your username, your machine name, YOUR CURRENT
DIRECTORY, and your command history number: FIRST ACTIVATE tcsh, then type into
your .cshrc file in your home directory the following four consecutive (non-blank) lines

set wh=‘whoami

alias setprompt ’set prompt="$wh@%m:%~ %h > "’
setprompt

alias cd ’cd \!*;setprompt’

then save this new version of .cshrc, and, lastly, at the Unix prompt execute
source .cshrc

Your new prompt should appear and persist over changes of directory and over successive
logins. For example, on Professor Case’s machine polaris, his prompt looks like

case@polaris:~/:105 180 >

when in directory ‘:105’ right under his home directory.

If you would like your prompt to show also the time of day for each new command line, you
could use instead of the second of the four lines above, the line:

alias setprompt ’set prompt="$wh@%m:%"~ [/t] %h > "’

keeping the other three lines the same.

When this prompt is used instead, in the same directory, it looks like:

151

152 APPENDIX D. TAILORING YOUR UNIX PROMPT

case@polaris:~/:105 [3:45pm] 183 >

For a SIMPLER prompt with name of machine and directory only you could use instead of
the second of the four lines above, the line:

alias setprompt ’set prompt = "Ym:%~ > "’

keeping the other three lines the same.

When this last prompt is used, in the same directory, it looks like:

polaris:~/:105 >

