Personalized Medicine and Model Based Drug Development: Opportunities For Biomedical Informatics

Zhaohui (John) Cai, MD, PhD
Director, Biomedical Informatics
AstraZeneca Pharmaceuticals

Delaware Chapter ASA Dinner Meeting
March 18, 2010
Presentation Outline

• Background
 • Personalized Medicine/Personalized Healthcare (PHC)
 • Modeling and Simulation (M&S) for PHC
• Current M&S types and gaps in drug development
• M&S by Biomedical Informatics filling the gaps
• Case studies
 • Case study 1: modeling for predicting treatment responders vs. non-responders for better efficacy
 • Case study 2: modeling for identifying patients with high safety risks
• M&S for PHC Integrated into a Clinical Program
Personalized Medicine or Personalized Healthcare

• Based on the recognition that unprecedented types of information will be obtainable from genetic, genomic, proteomic, imaging, etc, technologies, which will help us further refine known diseases into new categories

• Managing a patient's health based on the individual patient's specific characteristics vs. “standards of care”

• PHC in AZ to focus on therapies linked to diagnostics and tools to deliver superior outcomes to patients

• PHC in AZ to deliver:
 • Disease segmentation
 • Patient selection
 • Improved dosing
M&S for PHC: Opportunities for Biomedical Informatics

• Wide application of the new technologies to clinical trials has not come to reality in the pharmaceutical industry, for all kinds of reasons, such as
 • Limitations in trial designs
 • Extra cost and time
 • Uncertainty in regulatory and commercial consequences

• A cost-effective approach is M&S using available data and technologies
 • The industry and FDA have now a broader use and acceptance of M&S
 • Cheaper, faster, and easier to integrate into clinical programs (arguable)
 • Many M&S application types: biological (from cell to system to disease), pharmacological (PK/PD), clinical trial modeling and simulation, HEOR modeling, etc.
Major Types of M&S in Drug Development

Biological Modeling
(computational/systems biology)
To understand genetic, biochemical and physiological networks, as well as pathways and processes underlying disease and pharmacotherapy

Pharmacological Modeling
(pharmacometrics)
To guide clinical trial design, dose selection and development strategies

Statistical Modeling
(clinical trial design modeling)
To assess development strategies and trial designs in populations

Discovery

- **Discovery phase**
 - Target discovery and validation
 - Efficacy and safety prediction using in vitro and in vivo models

Preclinical Development

- **Learning phase**
 - Apply PK/PD modeling, biomarkers, and advanced statistical methodology
 - Demonstrate PoC, determine safety, and establish dose selection

Early Clinical Development

- **Confirmatory phase**
 - Verify effectiveness and monitor safety for long-term use
 - Confirm optimal dose and dosing regimen
 - Identify target patient population
 - Establish the benefit/risk ratio

Late Clinical Development

- **Product LCM**

- Modified from Orloff et al, 2009
Current M&S Gaps in Drug Development

Gap 1
- Biological Modeling
- Preclinical Development
- Gap b/w preclinical & clinical
- Translational ability in efficacy and safety

Gap 2
- Pharmacological Modeling
- Early Clinical Development
- Gap b/w learning & confirming*
 - Different clinical endpoints used
 - Lack of correlation between biomarkers and clinical endpoints (surrogacy problem)
 - Different study designs: population size, study length, etc.

Gap 3
- Statistical Modeling
- Late Clinical Development
- Product LCM
- Gap b/w pre & post marketing
 - Differences b/w clinical trials and real world populations and environments

* See FDA examples from FDA/PhRMA/DIA M&S workshop 2009
What’s Needed to Fill the Gaps?

Gap 1: Biological Modeling
- Discovery
- Preclinical Development
- Early Clinical Development
- Translational modeling I
 - Efficacy translation
 - Safety translation
 - PD/Biomarker modeling
 - Biomarker/efficacy modeling

Gap 2: Pharmacological Modeling
- Preclinical Development
- Early Clinical Development
- Late Clinical Development
- Biomarker modeling
 - Biomarker/safety modeling
 - Biomarker/efficacy modeling
 - Biomarker/Disease modeling
 - Pharmacovigilance

Gap 3: Statistical Modeling
- Late Clinical Development
- Product LCM
- Translational modeling II
 - CER
 - HTA
 - Pharmacovigilance

* Modeling relationships between biomarkers and the clinical endpoints used for phase 3 trials, starting at phase 2 stage using available data.
Overview of Biomedical Informatics for MBDD

Discovery → Preclinical Development → Early Clinical Development → Late Clinical Development → Product LCM

Gap 1: Biological Modeling
Gap 2: Pharmacological Modeling
Gap 3: Statistical Modeling

Translational Informatics
- Efficacy translational modeling
- Safety translational modeling
- Translational information systems & tools

Clinical Research Informatics
- Biomarker/efficacy modeling
- Biomarker/safety modeling
- Clinical information systems & tools

Health Informatics
- Mining real-world data for CER, HTA, pharmacovigilance,
- Healthcare information systems & tools

Predictive Information Platform (PIP)
Case Study 1: Identify Treatment Responders

Treatment effect in overall patient population

Placebo Treatment

Marker A ≤ xxx Marker A > xxx

Treatment effect in patient subpopulations defined by baseline biomarker levels (enabling potential patient stratification in Phase 3, and a PHC approach for registration)

Placebo Treatment

Blue: survivors Red: non-survivors
Models to Predict Survival In Treatment Group

Random Forests models using common 46 variables across 4 time points
Models to Predict Survival In Placebo Group

Random Forests using common 46 variables across 4 time points
Variable Importance Plots

Top predictors in placebo group (prognosis markers)

Top predictors in treatment group (efficacy markers)
Predictive Biomarkers: More Important For Survival On Treatment But Less Important On Placebo
Potential Application to Phase 3: Marker-based Vs. Traditional Design (with and without stratified analysis)

- **Traditional design:**
 - Register
 - Randomize
 - Placebo → Treatment
 - Placebo → Treatment

- **Marker-based design:**
 - Register
 - Randomize
 - Placebo → Treatment
 - Placebo → Treatment
 - Test marker

- **Interim analysis**
 - Traditional analysis
 - Stratified analysis

- **Final analysis**

- **Additional risk:** a test with a quick turn around time for Marker A

- **Benefit:**
 - Better chance to demonstrate mortality improvement and allow a personalized medicine approach with this product
 - Smaller sample size and shorter trial duration if interim analysis shows significance for Marker A <= cutoff arms.
 - More ethical if the treatment is not beneficial to patients with Marker A > cutoff
Case Study 2: Identify Patients at High Safety Risk

Using biomarkers to predict individual patient risk of developing liver signals in response to a drug
Question: Who will develop liver signals during the trial?

Purpose: risk stratification (with a PHC potential) and proactive surveillance
Data: Baseline Labs+ Demographics + Concomitant Medications + Medical History
What to predict: Patients on treatment w/ (Abnormals) or w/o liver signals (Normals)

Result (based on 5 projects, 24 studies)
- Marker A
- Markers B+C
- Marker D

Important for predicting
- AT>3
- ALP>1.5
- Bilirubin>1.5
Predictive Models Using Baseline Information
Predictive Baseline Variables for Biochemical Hy’s Law Cases During The Trials
Biomarker-based Risk Stratification to Improve Patient Safety

• Identify patients with high risk of developing liver signals
 • Better patient risk management
 • Cost-effective biomarker research
 • Being applied to a live project in transition to phase III

• Potential applications of the predictive biomarkers
 • Trial protocol for close monitoring of the high-risk subpopulation (e.g. those with marker A > xxx)
 • New exclusion criterion for trials as appropriate (e.g. excluding those with marker A > xxx)
 • Warnings in product label: marker A should be obtained before starting therapy. If marker A > xxx, do not start therapy or apply close monitoring
M&S for PHC Integrated into a Clinical Program

Which patients will benefit most from the therapy (i.e. with most effectiveness and least safety risk)?

Initial question

- Data mining
- Literature mining
- Model/Hypothesis
- Biological interpretation

Hypothesis & initial modeling

Candidate Biomarker(s)/model

Validated Biomarker(s)/model

Phase 2b Design and analysis

Phase 3 Design and analysis

Historical trials

Preclinical/Phases 1 & 2a

Outcome (a PHC product)

Learn*

Model application

Patient stratification

Model validation

Opportunities for BioMed Ix: Modeling relationships between biomarkers and the clinical endpoints used for phase 3 trials, starting at phase 2 stage using available data.
Acknowledgements

- AZ Biomedical Informatics Network
- AZ Hepatotoxicity Safety Knowledge Group
- AZ Clinical Project Team for AZDxxxx
- AZ Clinical Information Science Leadership
- AZ Discovery Information

- ASA Delaware Chapter

Thank you, and questions?
BACK UP SLIDES
(Informatics M&S Approaches & Methods)
Informatics Approach to M&S Using Machine Learning

Begin

Data Integration

Data preprocessing

Blind? (Y N)

Unsupervised learning
 e.g. Clustering

Supervised learning
 e.g. Bayesian classifier

Applications

End

- Multiple projects/studies
- Historical and current data
- Cross discovery and clinical
- Internal and external data
- Numerical and Text data
- Data from discrete platforms
- Safety and efficacy data
Machine Learning Paradigm

- do good job describing data (low error on training set)
- not too complex (feature selection)
- high cross-validation accuracy
- low validation error on test set (avoid overfitting)
Unsupervised and Supervised Machine Learning

- How do I recognize patterns without knowing the groups I want?
- It’s a way to form natural groupings
- What separated the groups that I have known?
- Can I predict who will be in what group?
Machine Learning Methods

- Supervised Methods
 - SDA, SRA
 - Bayesian Network, artificial neural networks (ANN),
 - Rules, decision trees, Random Forests
 - Support Vector Machines (SVM), Genetic Algorithms (GA)
 - ...

- Unsupervised Methods
 - Clustering,
 - PCA
 - Hidden Markov Model
 - Graphical models
 - ...