CHARLES' LAW:

In 1787, the French physicist Jacques Charles measured the volumes of samples of various gases at different temperatures. He plotted his data on a graph of volume vs. temperature, and noted that the data points for each gas lay on a straight line. The lines for different gases had different slopes.

Charles drew the following conclusions from these results:

1) The volume of a sample of a gas is directly proportional to the temperature of the gas. As the temperature increases, the volume also increases. In equation form, Charles' law can be written as:

\[V = (\text{constant}) \times T \]

where \(V \) is the volume and \(T \) is the Kelvin temperature of the sample of the gas.

2) The lines on the graph all converged at the point on the graph which corresponded to a volume of zero and a temperature of \(-273^\circ\text{C}\). This is the lowest possible temperature, called absolute zero (zero on the Kelvin scale).

Problem: A balloon has a volume of 750 mL in a freezer whose temperature is \(-10^\circ\text{C}\). If the balloon is removed from the freezer and allowed to warm to room temperature \((25^\circ\text{C})\), what will be its volume?

Solution: A convenient form of Charles' law to use in this case is:

\[\frac{V_i}{T_i} = \frac{V_f}{T_f} \]

where "i" and "f" indicate the initial and final conditions, respectively. Using the above temperatures as written leads to a negative value for the new volume. This isn't physically possible -- there's no such thing as a "negative volume"!

Converting the Celsius temperatures into Kelvin temperatures solves this problem:

\[-10 + 273 = 263 \text{ K} = T_i \quad 25 + 273 = 298 \text{ K} = T_f \]

\[V_f = \frac{V_i T_f}{T_i} = \frac{(750 \text{ mL}) \times (298 \text{ K})}{(263 \text{ K})} = 850 \text{ mL}. \quad \text{(Note: The balloon expands.)} \]